scholarly journals Properties of abundance gradient along the Galactic disk and the role of LAMOST

2013 ◽  
Vol 9 (S298) ◽  
pp. 304-309
Author(s):  
J.L. Hou ◽  
L. Chen ◽  
J.C. Yu ◽  
J. Sellwood ◽  
C. Pryor

AbstractIn this paper, we present our recent work on the evolution of abundance gradients along the Milky Way disk based on the Geneva Copenhagen Survey (GCS) and Radial Velocity Experiment (RAVE) data. We will also discuss the role of the LAMOST Milky Way disk survey in clarifying the properties of metallicity breaks observed through open clusters and young tracers along the Milky Way disk. It is believed that the Galactic disk forms inside-out, in which the stellar population at increasing radii is younger and more metal poor. This picture is consistent with most Galactic Chemical Evolution (GCE) models which also predict a tight correlation between the metallicity and age of stars at a given radius. However, it is only a result of “steady state" and no dynamical evolution effects were taken into account. We have selected two stellar samples from GCS and RAVE, each sample contains about 10,000 local thin-disk, main-sequence stars. We use the guiding radius which is determined by the conservation of z-direction angular momentum, to eliminate the blurring effects. And also use the effective temperature of the main sequence stars as a proxy of stellar age. It is shown that the metallicity gradient flattens as the age increases. This is not consistent with our previous GCE prediction, but can be explained by radial mixing effects. In order to further demonstrate the abundance breaks observed in the Galactic disk we have proposed, and have been carrying out, an open cluster survey project based on LAMOST. We plan to observe at least 400 open clusters in the northern Galactic sky. From the observations, we will get uniform parameters for those clusters with radial velocity and metallicities. We anticipate that this uniform open cluster sample could clarify the observed abundance break around the Milky Way disk corotation radius and also give a more robust result concerning the evolution of the abundance gradient.

2018 ◽  
Vol 618 ◽  
pp. A93 ◽  
Author(s):  
T. Cantat-Gaudin ◽  
C. Jordi ◽  
A. Vallenari ◽  
A. Bragaglia ◽  
L. Balaguer-Núñez ◽  
...  

Context. Open clusters are convenient probes of the structure and history of the Galactic disk. They are also fundamental to stellar evolution studies. The second Gaia data release contains precise astrometry at the submilliarcsecond level and homogeneous photometry at the mmag level, that can be used to characterise a large number of clusters over the entire sky. Aims. In this study we aim to establish a list of members and derive mean parameters, in particular distances, for as many clusters as possible, making use of Gaia data alone. Methods. We compiled a list of thousands of known or putative clusters from the literature. We then applied an unsupervised membership assignment code, UPMASK, to the Gaia DR2 data contained within the fields of those clusters. Results. We obtained a list of members and cluster parameters for 1229 clusters. As expected, the youngest clusters are seen to be tightly distributed near the Galactic plane and to trace the spiral arms of the Milky Way, while older objects are more uniformly distributed, deviate further from the plane, and tend to be located at larger Galactocentric distances. Thanks to the quality of Gaia DR2 astrometry, the fully homogeneous parameters derived in this study are the most precise to date. Furthermore, we report on the serendipitous discovery of 60 new open clusters in the fields analysed during this study.


2009 ◽  
Vol 5 (S266) ◽  
pp. 487-490
Author(s):  
D. B. Pavani ◽  
L. O. Kerber ◽  
E. Bica ◽  
W. J. Maciel

AbstractOpen cluster remnants (OCRs) are fundamental objects to investigate open cluster dissolution processes (e.g., Bica et al. 2001; Carraro 2002; Pavani et al. 2003; Carraro et al. 2007; Pavani & Bica 2007). They are defined as poorly populated concentrations of stars, with enough members to show evolutionary sequences in colour–magnitude diagrams (CMDs) as a result of the dynamical evolution of an initially more massive physical system. An OCR is intrinsically poorly populated, which makes its differentiation from field-star fluctuations difficult. Among the possible approaches to establish the nature of OCRs, we adopted CMD analysis combined with a robust statistical tool applied to 2mass data. In addition, photometry is the main information source available for possible OCRs (POCRs). We developed a statistical diagnostic tool to analyse the CMDs of POCRs and verify them as physical systems, explore membership probabilityies taking into account field contamination and derive age, distance and reddening values in a self-consistent way. We present the results of our analysis of 88 POCRs that are part of a larger sample that is widely distributed across the sky, with a significant density contrast of bright stars compared to the Galactic field. The 88 objects are projected onto low-density Galactic fields, at relatively high latitudes (|b| > 15°). Studies of larger POCR samples will provide a better understanding of OCR properties and constraints for theoretical models, including new insights into the evolution of open clusters and their dissolution rates. The results of this ongoing survey will provide a general picture of these fossil stellar systems and their connection to Galactic-disk evolution.


2008 ◽  
Vol 4 (S258) ◽  
pp. 141-152
Author(s):  
Elizabeth J. Jeffery

AbstractOpen clusters have long been objects of interest in astronomy. As a good approximation of essentially pure stellar populations, they have proved very useful for studies in a wide range of astrophysically interesting questions, including stellar evolution and atmospheres, the chemical and dynamical evolution of our Galaxy, and the structure of our Galaxy. Of fundamental importance to our understanding of open clusters is accurate determinations of cluster ages. Currently there are two main techniques for independently determining the ages of stellar populations: main sequence evolution theory (via cluster isochrones) and white dwarf cooling theory. We will provide an overview of these two methods, the current level of agreement between them, as well as a look to the current state of increasing precision in the determination of each. Particularly I will discuss the comprehensive data set collection that is being done by the WIYN Open Cluster Study, as well as a new Bayesian statistical technique that has been developed by our group and its applications in improving and determining white dwarf ages of open clusters. I will review the so-called bright white dwarf technique, a new way of measuring cluster ages with just the bright white dwarfs. I will discuss the first application of the Bayesian technique to the Hyades, also demonstrating the first successful application of the bright white dwarf technique. These results bring the white dwarf age of the Hyades into agreement with the main sequence turn off age for the first time.


2017 ◽  
Vol 12 (S330) ◽  
pp. 233-234
Author(s):  
Chien-Cheng Lin ◽  
Xiao-Ying Pang

AbstractOpen clusters (OCs) are important objects for stellar dynamics studies. The short survival timescale of OCs makes them closely related to the formation of Galactic field stars. We motivate to investigate the dynamical evolution of OCs on the aspect of internal effect and the external influence. Firstly, we make use of the known OC catalog to obtain OCs masses, effective radii. Additionally, we estimate OCs kinematics properties by OC members cross-matched with radial velocity and metallicity from SDSSIV/APOGEE2. We then establish the fundamental plane of OCs based on the radial velocity dispersion, the effective radius, and average surface brightness. The deviation of the fundamental plane from the Virial Plane, so called the tilt, and the r.m.s. dispersion of OCs around the average plane are used to indicate the dynamical status of OCs. Parameters of the fitted plane will vary with cluster age and distance.


2021 ◽  
Vol 502 (3) ◽  
pp. 4350-4358
Author(s):  
Weijia Sun ◽  
Richard de Grijs ◽  
Licai Deng ◽  
Michael D Albrow

ABSTRACT The impact of stellar rotation on the morphology of star cluster colour–magnitude diagrams is widely acknowledged. However, the physics driving the distribution of the equatorial rotation velocities of main-sequence turn-off stars is as yet poorly understood. Using Gaia Data Release 2 photometry and new Southern African Large Telescope medium-resolution spectroscopy, we analyse the intermediate-age ($\sim 1\text{-}{\rm Gyr}$-old) Galactic open clusters NGC 3960, NGC 6134, and IC 4756 and develop a novel method to derive their stellar rotation distributions based on SYCLIST stellar rotation models. Combined with literature data for the open clusters NGC 5822 and NGC 2818, we find a tight correlation between the number ratio of slow rotators and the clusters’ binary fractions. The blue-main-sequence stars in at least two of our clusters are more centrally concentrated than their red-main-sequence counterparts. The origin of the equatorial stellar rotation distribution and its evolution remains as yet unidentified. However, the observed correlation in our open cluster sample suggests a binary-driven formation mechanism.


2009 ◽  
Vol 5 (S266) ◽  
pp. 470-473
Author(s):  
C. Martayan ◽  
D. Baade ◽  
Y. Frémat ◽  
J. Zorec

AbstractStar clusters are privileged laboratories for studying the evolution of massive stars (OB stars). One particularly interesting question concerns the phases during which the classical Be stars occur, which—unlike HAe/Be stars—are not pre-main-sequence objects, nor supergiants. Rather, they are extremely rapidly rotating B-type stars with a circumstellar decretion disk formed by episodic ejections of matter from the central star. To study the impact of mass, metallicity, and age on the Be phase, we observed Small Magellanic Cloud (SMC) open clusters with two different techniques: (i) with the ESO–WFI in slitless mode, which allowed us to find the brighter Be and other emission-line stars in 84 SMC open clusters, and (ii) with the VLT–FLAMES multifiber spectrograph to determine accurately the evolutionary phases of Be stars in the Be-star-rich SMC open cluster NGC 330. Based on a comparison to the Milky Way, a model of Be stellar evolution, appearance as a function of metallicity and mass, and spectral type is developed, involving the fractional critical rotation rate as a key parameter.


1998 ◽  
Vol 11 (1) ◽  
pp. 430-432
Author(s):  
Ted Von Hippel

The study of cluster white dwarfs (WDs) has been invigorated recently bythe Hubble Space Telescope (HST). Recent WD studies have been motivated by the new and independent cluster distance (Renzini et al. 1996), age (von Hippel et al. 1995; Richer et al. 1997), and stellar evolution (Koester & Reimers 1996) information that cluster WDs can provide. An important byproduct of these studies has been an estimate of the WD mass contribution in open and globular clusters. The cluster WD mass fraction is of importance for understanding the dynamical state and history of star clusters. It also bears an important connection to the WD mass fractions of the Galactic disk and halo. Current evidence indicates that the open clusters (e.g. von Hippel et al. 1996; Reid this volume) have essentially the same luminosity function (LF) as the solar neighborhood population. The case for the halo is less clear, despite the number of very good globular cluster LFs down to nearly 0.1 solar masses (e.g. Cool et al. 1996; Piotto, this volume), as the field halo LF is poorly known. For most clusters dynamical evolution should cause evaporation of the lowest mass members, biasing clusters to have flatter present-day mass functions (PDMFs) than the disk and halo field populations. Dynamical evolution should also allow cluster WDs to escape, though not in the same numbers as the much lower mass main sequence stars. The detailed connection between cluster PDMFs and the field IMF awaits elucidation from observations and the new combined N-body and stellar evolution models (Tout, this volume). Nevertheless, the WD mass fraction of clusters already provides an estimate for the WD mass fraction of the disk and halo field populations. A literature search to collect cluster WDs and a simple interpretive model follow. This is a work in progress and the full details of the literature search and the model will be published elsewhere.


1998 ◽  
Vol 11 (1) ◽  
pp. 565-565
Author(s):  
G. Cayrel de Strobel ◽  
R. Cayrel ◽  
Y. Lebreton

After having studied in great detail the observational HR diagram (log Teff, Mbol) composed by 40 main sequence stars of the Hyades (Perryman et al.,1997, A&A., in press), we have tried to apply the same method to the observational main sequences of the three next nearest open clusters: Coma Berenices, the Pleiades, and Praesepe. This method consists in comparing the observational main sequence of the clusters with a grid of theoretical ZAMSs. The stars composing the observational main sequences had to have reliable absolute bolometric magnitudes, coming all from individual Hipparcos parallaxes, precise bolometric corrections, effective temperatures and metal abundances from high resolution detailed spectroscopic analyses. If we assume, following the work by Fernandez et al. (1996, A&A,311,127), that the mixing-lenth parameter is solar, the position of a theoretical ZAMS, in the (log Teff, Mbol) plane, computed with given input physics, only depends on two free parameters: the He content Y by mass, and the metallicity Z by mass. If effective temperature and metallicity of the constituting stars of the 4 clusters are previously known by means of detailed analyses, one can deduce their helium abundances by means of an appropriate grid of theoretical ZAMS’s. The comparison between the empirical (log Teff, Mbol) main sequence of the Hyades and the computed ZAMS corresponding to the observed metallicity Z of the Hyades (Z= 0.0240 ± 0.0085) gives a He abundance for the Hyades, Y= 0.26 ± 0.02. Our interpretation, concerning the observational position of the main sequence of the three nearest clusters after the Hyades, is still under way and appears to be greatly more difficult than for the Hyades. For the moment we can say that: ‒ The 15 dwarfs analysed in detailed in Coma have a solar metallicity: [Fe/H] = -0.05 ± 0.06. However, their observational main sequence fit better with the Hyades ZAMS. ‒ The mean metallicity of 13 Pleiades dwarfs analysed in detail is solar. A metal deficient and He normal ZAMS would fit better. But, a warning for absorption in the Pleiades has to be recalled. ‒ The upper main sequence of Praesepe, (the more distant cluster: 180 pc) composed by 11 stars, analysed in detail, is the one which has the best fit with the Hyades ZAMS. The deduced ‘turnoff age’ of the cluster is slightly higher than that of the Hyades: 0.8 Gyr instead of 0.63 Gyr.


2017 ◽  
Vol 26 (1) ◽  
Author(s):  
Ingrid Pelisoli ◽  
S. O. Kepler ◽  
Detlev Koester

AbstractEvolved stars with a helium core can be formed by non-conservative mass exchange interaction with a companion or by strong mass loss. Their masses are smaller than 0.5 M⊙. In the database of the Sloan Digital Sky Survey (SDSS), there are several thousand stars which were classified by the pipeline as dwarf O, B and A stars. Considering the lifetimes of these classes on the main sequence, and their distance modulus at the SDSS bright saturation, if these were common main sequence stars, there would be a considerable population of young stars very far from the galactic disk. Their spectra are dominated by Balmer lines which suggest effective temperatures around 8 000-10 000 K. Several thousand have significant proper motions, indicative of distances smaller than 1 kpc. Many show surface gravity in intermediate values between main sequence and white dwarf, 4.75 < log g < 6.5, hence they have been called sdA stars. Their physical nature and evolutionary history remains a puzzle. We propose they are not H-core main sequence stars, but helium core stars and the outcomes of binary evolution. We report the discovery of two new extremely-low mass white dwarfs among the sdAs to support this statement.


Sign in / Sign up

Export Citation Format

Share Document