scholarly journals A comparison of the Andromeda and Milky Way galaxies

1985 ◽  
Vol 106 ◽  
pp. 423-430
Author(s):  
Paul Hodge

A comparison of some of the basic properties of M31 and the Milky Way indicates that in almost every respect M31 is larger than the Galaxy. It is more luminous, redder, more massive, and of earlier Hubble type. A detailed comparison of the spiral structure, based on optical tracers, for comparable areas in the outer parts of each galaxy shows differences in the arm spacings, in density enhancement, and in pitch angle.

1970 ◽  
Vol 38 ◽  
pp. 126-139 ◽  
Author(s):  
H. Weaver

The extensive Hat Creek survey of neutral hydrogen combined with southern observations provides the basis for a new discussion of the spiral structure of the galaxy. The purpose of this investigation is to provide a general picture of the galaxy. It is found that the pitch of the spiral arms is approximately 12°.5 and that there are many spurs and interarm features as we observe in external galaxies.The sun is not located in a major spiral arm, but rather in a spur or offshoot originating near or at the Sagittarius arm, which is a major structure in the galaxy. The young stars in the general vicinity of the sun delineate this spur, not a major arm structure. The stars and the gas are in agreement in indicating a large pitch angle (20°–25°) for this local structure, which differs from the smaller pitch angle for the arms which form the system as a whole.In the presentation a computer-produced movie of the galaxy based on Hat Creek hydrogen contour maps similar to those in Figure 1 was shown. It was used to illustrate generally the complexity of the gas structure and, in particular, to show (i) observational aspects of the spur in which the sun is located and (ii) the point of origin of the so-called Perseus arm.


2017 ◽  
Vol 13 (S336) ◽  
pp. 148-153 ◽  
Author(s):  
Mark J. Reid

AbstractMaser astrometry is now providing parallaxes with accuracies of ±10 micro-arcseconds, which corresponds to 10% accuracy at a distance of 10 kpc! The VLBA BeSSeL Survey and the Japanese VERA project have measured ≈200 parallaxes for masers associated with young, high-mass stars. Since these stars are found in spiral arms, we now are directly mapping the spiral structure of the Milky Way. Combining parallaxes, proper motions, and Doppler velocities, we have complete 6-dimensional phase-space information. Modeling these data yields the distance to the Galactic Center, the rotation speed of the Galaxy at the Sun, and the nature of the rotation curve.


1970 ◽  
Vol 38 ◽  
pp. 225-227
Author(s):  
E. B. Kostjakova

The integrated spectrum of the Milky Way can give some information on the composition and large-scale structure of the Galaxy.


1979 ◽  
Vol 84 ◽  
pp. 93-98 ◽  
Author(s):  
Roberta M. Humphreys

Ever since the pioneering work by Morgan and his collaborators (1952, 1953), it has been well known that the distribution of the associations of young stars, HII regions, and young clusters defines the optical spiral features. Although considerable progress has been made in spiral structure studies during these past 25 years, the basic picture of optical spiral structure has not been significantly altered. The three spiral features first described by Morgan are still recognized. Modern work on the various optical spiral features has strengthened and improved the definition of the optical features, especially to larger distances. Most of the improvements and any additions to the basic three-arm pattern have resulted primarily from observations of the spiral tracers in the Southern Milky Way. Specifically, the Sagittarius feature is now generally recognized as the Sagittarius-Carina arm which may indeed be a major arm of the Galaxy. It can now be traced optically to very large distances, up to 6 kpc or more in the direction ℓ = 290°. The Local arm (Cygnus-Orion) probably extends to 4 kpc in the direction of Puppis (ℓ ≅ 240°), and most astronomers would probably agree that our local spiral feature is not a major arm, but an inter-arm feature.


1962 ◽  
Vol 15 (3) ◽  
pp. 369 ◽  
Author(s):  
DS Mathewson ◽  
JR Healey ◽  
JM Rome

The 1440 Mcls survey (Part I of this series) has been used in conjunction with the 85�5Mc/s survey of Hill, Slee, and Mills (1958) to delineate the distribution of the thermal and nonthermal radiation from the disk component of the Southern Milky Way and so complete an investigation commenced by the Northern Hemisphere observers Westerhout (Leiden) and Large, Mathewson, and Haslam (Jodrell Bank). Results of the analysis show an intense concent,ration of ionized hydrogen in an irregular spiral structure in the inner regions of the Galaxy. From lII=256� to 88�, good agreement was obtained between the longitudes at which concentrations of neutral hydrogen were found to occur from H-line studies and the longitudes at which the ionized hydrogen was concentrated. The steps in the longitude distribution of the 85�5 Mcls radiation which Mills used to delineate the spiral arms of the Galaxy were not all visible in the longitude distribution of the nonthermal component obtained from this present analysis. It is believed that three of Mills's steps are thermal in origin.


1967 ◽  
Vol 31 ◽  
pp. 313-317 ◽  
Author(s):  
C. C. Lin ◽  
F. H. Shu

Density waves in the nature of those proposed by B. Lindblad are described by detailed mathematical analysis of collective modes in a disk-like stellar system. The treatment is centered around a hypothesis of quasi-stationary spiral structure. We examine (a) the mechanism for the maintenance of this spiral pattern, and (b) its consequences on the observable features of the galaxy.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


2020 ◽  
Vol 496 (1) ◽  
pp. 638-648 ◽  
Author(s):  
Timo L R Halbesma ◽  
Robert J J Grand ◽  
Facundo A Gómez ◽  
Federico Marinacci ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT We investigate whether the galaxy and star formation model used for the Auriga simulations can produce a realistic globular cluster (GC) population. We compare statistics of GC candidate star particles in the Auriga haloes with catalogues of the Milky Way (MW) and Andromeda (M31) GC populations. We find that the Auriga simulations do produce sufficient stellar mass for GC candidates at radii and metallicities that are typical for the MW GC system (GCS). We also find varying mass ratios of the simulated GC candidates relative to the observed mass in the MW and M31 GCSs for different bins of galactocentric radius metallicity (rgal–[Fe/H]). Overall, the Auriga simulations produce GC candidates with higher metallicities than the MW and M31 GCS and they are found at larger radii than observed. The Auriga simulations would require bound cluster formation efficiencies higher than 10 per cent for the metal-poor GC candidates, and those within the Solar radius should experience negligible destruction rates to be consistent with observations. GC candidates in the outer halo, on the other hand, should either have low formation efficiencies, or experience high mass-loss for the Auriga simulations to produce a GCS that is consistent with that of the MW or M31. Finally, the scatter in the metallicity as well as in the radial distribution between different Auriga runs is considerably smaller than the differences between that of the MW and M31 GCSs. The Auriga model is unlikely to give rise to a GCS that can be consistent with both galaxies.


2021 ◽  
Vol 31 (1) ◽  
pp. 1-44
Author(s):  
Andreas Eckart

AbstractWe study to what extent the Milky Way was used as an orientation tool at the beginning of the Islamic period covering the 8th to the 15th century, with a focus on the first half of that era. We compare the texts of three authors from three different periods and give detailed comments on their astronomical and traditional content. The text of al-Marzūqī summarises the information on the Milky Way put forward by the astronomer and geographer ʾAbū Ḥanīfa al-Dīnawarī. The text makes it clear that in some areas the Milky Way could be used as a geographical guide to determine the approximate direction toward a region on Earth or the direction of prayer. In the 15th century, the famous navigator Aḥmad b. Māǧid describes the Milky Way in his nautical instructions. He frequently demonstrates that the Milky Way serves as a guidance aid to find constellations and stars that are useful for precise navigation on land and at sea. On the other hand, Ibn Qutayba quotes in his description of the Milky Way a saying from the famous Bedouin poet Ḏū al-Rumma, which is also mentioned by al-Marzūqī. In this saying the Milky Way is used to indicate the hot summer times in which travelling the desert was particularly difficult. Hence, the Milky Way was useful for orientation in space and time and was used for agricultural and navigational purposes.


Sign in / Sign up

Export Citation Format

Share Document