Questions on Logical Inference

1973 ◽  
Vol 7 ◽  
pp. 30-48
Author(s):  
Rush Rhees

A fundamental notion of the Tractatus is that of the repetition of an operation. The operation specially mentioned is the simultaneous negation represented by the Sheffer stroke. ‘If an operation is applied repeatedly to its own results, I speak of successive applications of it. … In a similar sense I speak of successive applications of more than one operation to a number of propositions’ (5.2521).

1973 ◽  
Vol 7 ◽  
pp. 30-48
Author(s):  
Rush Rhees

A fundamental notion of the Tractatus is that of the repetition of an operation. The operation specially mentioned is the simultaneous negation represented by the Sheffer stroke. ‘If an operation is applied repeatedly to its own results, I speak of successive applications of it. … In a similar sense I speak of successive applications of more than one operation to a number of propositions’ (5.2521).


2021 ◽  
Vol 32 (2) ◽  
pp. 292-300
Author(s):  
Stephen Ferrigno ◽  
Yiyun Huang ◽  
Jessica F. Cantlon

The capacity for logical inference is a critical aspect of human learning, reasoning, and decision-making. One important logical inference is the disjunctive syllogism: given A or B, if not A, then B. Although the explicit formation of this logic requires symbolic thought, previous work has shown that nonhuman animals are capable of reasoning by exclusion, one aspect of the disjunctive syllogism (e.g., not A = avoid empty). However, it is unknown whether nonhuman animals are capable of the deductive aspects of a disjunctive syllogism (the dependent relation between A and B and the inference that “if not A, then B” must be true). Here, we used a food-choice task to test whether monkeys can reason through an entire disjunctive syllogism. Our results show that monkeys do have this capacity. Therefore, the capacity is not unique to humans and does not require language.


2021 ◽  
Author(s):  
Miriam Noël Haidle ◽  
Oliver Schlaudt

AbstractIn our recent article, "Where Does Cumulative Culture Begin? A Plea for a Sociologically Informed Perspective" (Haidle and Schlaudt in Biol Theory 15:161–174, 2020) we commented on a fundamental notion in current approaches to cultural evolution, the “zones of latent solutions” (henceforth ZLS), and proposed a modification of it, namely a social and dynamic interpretation of the latent solutions which were originally introduced within an individualistic framework and as static, genetically fixed entities. This modification seemed, and still seems, relevant to us and, in particular, more adequate for coping with the archaeological record. Bandini et al. (Biol Theory, 2021) rejected our proposition and deemed it unnecessary. In their critique, they focused on: (1) our reservations about an individualistic approach; (2) our objections to the presumption of fully naive individuals; and (3) our demand for an extended consideration of forms of social learning simpler than emulation and imitation. We will briefly reply to their critique in order to clarify some misunderstandings. However, the criticisms also show that we are at an impasse on certain crucial topics, such as the meaning of ZLS and the scope and nature of culture in general. Thus, we consider it necessary to make an additional effort to identify the conceptual roots which are at the very basis of the dissent with Bandini et al.


1940 ◽  
Vol 1 (2) ◽  
pp. 117-129
Author(s):  
Gerald Kelly
Keyword(s):  

1870 ◽  
Vol 18 (114-122) ◽  
pp. 122-123

I submit to the Society the present exposition of some of the elementary principles of an Abstract m -dimensional geometry. The science presents itself in two ways,—as a legitimate extension of the ordinary two- and threedimensional geometries; and as a need in these geometries and in analysis generally. In fact whenever we are concerned with quantities connected together in any manner, and which are, or are considered as variable or determinable, then the nature of the relation between the quantities is frequently rendered more intelligible by regarding them (if only two or three in number) as the coordinates of a point in a plane or in space; for more than three quantities there is, from the greater complexity of the case, the greater need of such a representation; but this can only be obtained by means of the notion of a space of the proper dimensionality; and to use such representation, we require the geometry of such space. An important instance in plane geometry has actually presented itself in the question of the determination of the curves which satisfy given conditions: the conditions imply relations between the coefficients in the equation of the curve; and for the better understanding of these relations it was expedient to consider the coefficients as the coordinates of a point in a space of the proper dimensionality. A fundamental notion in the general theory presents itself, slightly in plane geometry, but already very prominently in solid geometry; viz. we have here the difficulty as to the form of the equations of a curve in space, or (to speak more accurately) as to the expression by means of equations of the twofold relation between the coordinates of a point of such curve. The notion in question is that of a k -fold relation,—as distinguished from any system of equations (or onefold relations) serving for the expression of it,—and giving rise to the problem how to express such relation by means of a system of equations (or onefold relations). Applying to the case of solid geometry my conclusion in the general theory, it may be mentioned that I regard the twofold relation of a curve in space as being completely and precisely expressed by means of a system of equations (P = 0, Q = 0, . . T = 0), when no one of the func ions P, Q, ... T, as a linear function, with constant or variable integral coefficients, of the others of them, and when every surface whatever which passes through the curve has its equation expressible in the form U = AP + BQ ... + KT., with constant or variable integral coefficients, A, B ... K. It is hardly necessary to remark that all the functions and coefficients are taken to be rational functions of the coordinates, and that the word integral has reference to the coordinates.


2000 ◽  
Vol 52 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Ole Immanuel Franksen ◽  
Peter Falster
Keyword(s):  

2020 ◽  
Vol 26 (10) ◽  
pp. 1343-1363
Author(s):  
Jisha Maniamma ◽  
Hiroaki Wagatsuma

Bongard Problems (BPs) are a set of 100 visual puzzles introduced by M. M. Bongard in the mid-1960s. BPs have been established as benchmark puzzles for understanding the human context-based learning abilities to solve ill- posed problems. The puzzle requires the logical explanation as the answer to distinct two classes of figures from redundant options, which can be obtained by a thinking process to alternatively change the target frame (hierarchical level of analogy) of thinking from a wide range concept networks as D. R. Hofstadter suggested. Some minor research results to solve a limited set of BPs have reported based a single architecture accompanied with probabilistic approaches; however the central problem on BP's difficulties is the requirement of flexible changes of the target frame, therefore non-hierarchical cluster analyses does not provide the essential solution and hierarchical probabilistic models needs to include unnecessary levels for learning from the beginning to prevent a prompt decision making. We hypothesized that logical reasoning process with limited numbers of meta-data descriptions realizes the sophisticated and prompt decision-making and the performance is validated by using BPs. In this study, a semantic web-based hierarchical model to solve BPs was proposed as the minimum and transparent system to mimic human-logical inference process in solving of BPs by using the Description Logic (DL) with assertions on concepts (TBox) and individuals (ABox). Our results demonstrated that the proposed model not only provided individual solutions as a BP solver, but also proved the correctness of Hofstadter's idea as the flexible frame with concept networks for BPs in our actual implementation, which no one has ever achieved. This fact will open the new horizon for theories for designing of logical reasoning systems especially for critical judgments and serious decision-making as expert humans do in a transparent and descriptive way of why they judged in that manner.


2020 ◽  
Vol 3 (4) ◽  
Author(s):  
An-Pi Chang

Research on the essence of policy implementation is the basis for finding solutions. A circular city is founded on the concept of a circular economy, extending from the recycling of single substances to regional resource recycling development. Given limited energy and resource conditions, the emphasis lies in considering right from that source that at the end of a product’s service life substances can continue to enter their cycle of re-use and re-utilization. Meanwhile, residual substances can return to the industry and organisms as basic nutrients. The development of circular cities has to be multi-faceted synergetic promotion. Otherwise, it will be deviating from the meaning of the circular essence. In this study, the sustainable development of environment, economy, society and governance aspects were adopted as the starting point for exploring the connotation of the promotion of circular cites. The semi-structured expert interview was adopted as the research method. The pyramid principle was employed to carry out logical inference. The Fishbone Diagram was used to carry out time series analysis in order to ensure relevant requirements do not deviate from the mindset of circular essence during circular city planning. Finally, the 13 circular city planning solutions proposed in the research results and contribution can be specifically provided to agencies engaged in circular city planning and governance. They shall also serve as a reference for circular city solutions.


Sign in / Sign up

Export Citation Format

Share Document