Assessment of Respiratory Function In the Intensive Care Unit

Author(s):  
Charles F. Bolton

AbstractDisorders of both the central and peripheral nervous systems are important causes of respiratory insufficiency. However, simple clinical observations and pulmonary function measurements may fail to identify the location and type of disorder. This can often be accomplished by the newly-developed technique of phrenic nerve conduction and needle electromyography of the diaphragm which delineate the various disturbances of central drive, axonal or demyelinating neuropathies of the phrenic nerves and certain myopathies. These studies have been preformed safely and with little discomfort on adults, children or infants, and in out-patient and general ward settings. We have found they are of particular value in the intensive care unit.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. Friedrich Kuhn ◽  
Julius J. Grunow ◽  
Pascal Leimer ◽  
Marco Lorenz ◽  
David Berger ◽  
...  

AbstractDiaphragm weakness affects up to 60% of ventilated patients leading to muscle atrophy, reduction of muscle fiber force via muscle fiber injuries and prolonged weaning from mechanical ventilation. Electromagnetic stimulation of the phrenic nerve can induce contractions of the diaphragm and potentially prevent and treat loss of muscular function. Recommended safety distance of electromagnetic coils is 1 m. The aim of this study was to investigate the magnetic flux density in a typical intensive care unit (ICU) setting. Simulation of magnetic flux density generated by a butterfly coil was performed in a Berlin ICU training center with testing of potential disturbance and heating of medical equipment. Approximate safety distances to surrounding medical ICU equipment were additionally measured in an ICU training center in Bern. Magnetic flux density declined exponentially with advancing distance from the stimulation coil. Above a coil distance of 300 mm with stimulation of 100% power the signal could not be distinguished from the surrounding magnetic background noise. Electromagnetic stimulation of the phrenic nerve for diaphragm contraction in an intensive care unit setting seems to be safe and feasible from a technical point of view with a distance above 300 mm to ICU equipment from the stimulation coil.


Author(s):  
Gianmarco Secco ◽  
◽  
Marzia Delorenzo ◽  
Francesco Salinaro ◽  
Caterina Zattera ◽  
...  

AbstractBedside lung ultrasound (LUS) can play a role in the setting of the SarsCoV2 pneumonia pandemic. To evaluate the clinical and LUS features of COVID-19 in the ED and their potential prognostic role, a cohort of laboratory-confirmed COVID-19 patients underwent LUS upon admission in the ED. LUS score was derived from 12 fields. A prevalent LUS pattern was assigned depending on the presence of interstitial syndrome only (Interstitial Pattern), or evidence of subpleural consolidations in at least two fields (Consolidation Pattern). The endpoint was 30-day mortality. The relationship between hemogasanalysis parameters and LUS score was also evaluated. Out of 312 patients, only 36 (11.5%) did not present lung involvment, as defined by LUS score < 1. The majority of patients were admitted either in a general ward (53.8%) or in intensive care unit (9.6%), whereas 106 patients (33.9%) were discharged from the ED. In-hospital mortality was 25.3%, and 30-day survival was 67.6%. A LUS score > 13 had a 77.2% sensitivity and a 71.5% specificity (AUC 0.814; p < 0.001) in predicting mortality. LUS alterations were more frequent (64%) in the posterior lower fields. LUS score was related with P/F (R2 0.68; p < 0.0001) and P/F at FiO2 = 21% (R2 0.59; p < 0.0001). The correlation between LUS score and P/F was not influenced by the prevalent ultrasound pattern. LUS represents an effective tool in both defining diagnosis and stratifying prognosis of COVID-19 pneumonia. The correlation between LUS and hemogasanalysis parameters underscores its role in evaluating lung structure and function.


2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Ainnur Rahmanti ◽  
Dyah Kartika Putri

Patient with critical condition had high morbidity and mortality rate. This condition is worsened by long term immobilization. Instability vital sign made nurses stationed delayed mobilization activities in ICU. Progressive mobilization must be started for ICU patient to decrease respiratory function, level of awareness and cardiovascular function. The objective of this study was to identify progressive mobilization activities on blood pressure parameters among critical patients in ICU. The design of this study was quai experiment design. Thirty respondents were included to the study using concequtive sampling. Progressive mobilization was given with head of bed 300 (HOB 300), head of bed450 (HOB 450) with  passive range of motion, continued with right and left lateral position. Anova repeated measurement was used to identify mean difference each of blood pressure. The result of this study show there is two moment sistolic change between HOB 300 to HOB 450 and HOB 450 to right lateral position (3,3%). There is nine moment diastolic change between HOB 450 to right lateral position (16,7%).   Keywords: blood pressure, ICU, Progressive mobilization


Neurosurgery ◽  
2012 ◽  
Vol 70 (4) ◽  
pp. 796-801 ◽  
Author(s):  
Mou-Xiong Zheng ◽  
Yan-Qun Qiu ◽  
Wen-Dong Xu ◽  
Jian-Guang Xu

Abstract BACKGROUND: Phrenic nerve transfer (PNT) or multiple intercostal nerve transfer (MIT) alone are reported to have no significant impact on pulmonary function in the short or medium term, but it has rarely been reported whether the combination of PNT-MIT could influence respiratory function in the long term. OBJECTIVE: Respiratory function was evaluated after PNT and PNT-MIT 7 to 19 years (mean, 10 years) postoperatively. METHODS: Twenty-three adult patients with brachial plexus avulsion injuries who underwent PNT-MIT were compared with 19 corresponding patients who underwent PNT. Pulmonary function testings, phrenic nerve conduction study, and chest fluoroscopy were performed. In the PNT-MIT group, further investigation was performed on the effect of the number of transferred intercostal nerves and the timing of MIT. RESULTS: In the PNT-MIT group, forced vital capacity, forced expiratory volume in one second, and total lung capacity were 73.69%, 72.04%, and 74.81% of predicted values without significant differences from the PNT group. Diaphragmatic paralysis permanently existed with 1 to 1.5 intercostal spaces (ICSs) elevation and near 1 ICS reduced excursion. There was no statistical difference between the PNT and PNT-MIT groups. Furthermore, 3 and 4 intercostal nerves transferred resulted in no further decrease in pulmonary function test results than 2 intercostal nerves. No significant difference was found when PNT and MIT were performed at the same stage or with an interval. CONCLUSION: PNT-MIT did not result in additional impairment in respiratory function in adult patients compared with PNT alone. It is safe to transfer 2 to 4 intercostal nerves at 1 to 2 months delay after PNT.


Sign in / Sign up

Export Citation Format

Share Document