Brain evolution: A matter of constraints and permissions?

2001 ◽  
Vol 24 (2) ◽  
pp. 284-286
Author(s):  
Emmanuel Gilissen ◽  
Robert M.T. Simmons

The article of Finlay et al. is an excellent example of identifying constraints in the development of the brain, and their implications on brain architecture in evolution. Here we further illustrate the importance of constraints by presenting a few examples of how a small number of biophysical mechanisms or even a single life history parameter can have an enormous impact on brain evolution.

2016 ◽  
Author(s):  
Mauricio González-Forero ◽  
Timm Faulwasser ◽  
Laurent Lehmann

AbstractMathematical modeling of brain evolution is scarce, possibly due in part to the difficulty of describing how brain relates to fitness. Yet such modeling is needed to formalize verbal arguments and deepen our understanding of brain evolution. To address this issue, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain’s energetic expense is due to production (learning) and maintenance (memory) of skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. Our model can be used to ask what fraction of growth energy should be allocated to the growth of brain and other tissues at each age under various biological settings as a result of natural selection. We apply the model to find uninvadable allocation strategies under a “me-against-nature” setting, namely when overcoming environmentally determined energy-extraction challenges does not involve any interactions with other individuals (possibly except caregivers), and using parameter values for modern humans. The uninvadable strategies yield predictions for brain and body mass throughout ontogeny, as well as for the ages at maturity, adulthood, and brain growth arrest. We find that (1) a me-against-nature setting is enough to generate adult brain and body mass of ancient human scale, (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory, and (3) adult skill number is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills. Overall, our model is a step towards a quantitative theory of brain life history evolution yielding testable quantitative predictions as ecological, demographic, and social factors vary.Author SummaryUnderstanding what promotes the evolution of a given feature is often helped by mathematical modeling. However, mathematical modeling of brain evolution has remained scarce, possibly because of difficulties describing mathematically how the brain relates to reproductive success, which is the currency of evolution. Here we combine elements of two research fields that have previously been successful at detailing how a feature impacts reproductive success (life history theory) and at predicting the individual’s body mass throughout its life without the need to describe in detail the inner workings of the body (metabolic theory). We apply the model to a setting where individuals must extract energy from the environment without interacting with other individuals except caregivers (“me-against-nature”) and parameterize the model with data from humans. In this setting, the model can correctly predict a variety of human features, including large brain sizes. Our model can be used to obtain testable quantitative predictions in terms of brain mass throughout an individual’s life from assumed hypotheses promoting brain evolution, such as harsh environments or plentiful social interactions.


Primates ◽  
2021 ◽  
Author(s):  
Rie Asano

AbstractA central property of human language is its hierarchical structure. Humans can flexibly combine elements to build a hierarchical structure expressing rich semantics. A hierarchical structure is also considered as playing a key role in many other human cognitive domains. In music, auditory-motor events are combined into hierarchical pitch and/or rhythm structure expressing affect. How did such a hierarchical structure building capacity evolve? This paper investigates this question from a bottom-up perspective based on a set of action-related components as a shared basis underlying cognitive capacities of nonhuman primates and humans. Especially, I argue that the evolution of hierarchical structure building capacity for language and music is tractable for comparative evolutionary study once we focus on the gradual elaboration of shared brain architecture: the cortico-basal ganglia-thalamocortical circuits for hierarchical control of goal-directed action and the dorsal pathways for hierarchical internal models. I suggest that this gradual elaboration of the action-related brain architecture in the context of vocal control and tool-making went hand in hand with amplification of working memory, and made the brain ready for hierarchical structure building in language and music.


2017 ◽  
Vol 19 (3) ◽  
pp. 349-377
Author(s):  
Leonardo Niro Nascimento

This article first aims to demonstrate the different ways the work of the English neurologist John Hughlings Jackson influenced Freud. It argues that these can be summarized in six points. It is further argued that the framework proposed by Jackson continued to be pursued by twentieth-century neuroscientists such as Papez, MacLean and Panksepp in terms of tripartite hierarchical evolutionary models. Finally, the account presented here aims to shed light on the analogies encountered by psychodynamically oriented neuroscientists, between contemporary accounts of the anatomy and physiology of the nervous system on the one hand, and Freudian models of the mind on the other. These parallels, I will suggest, are not coincidental. They have a historical underpinning, as both accounts most likely originate from a common source: John Hughlings Jackson's tripartite evolutionary hierarchical view of the brain.


Brain ◽  
2019 ◽  
Vol 142 (12) ◽  
pp. 3991-4002 ◽  
Author(s):  
Martijn P van den Heuvel ◽  
Lianne H Scholtens ◽  
Siemon C de Lange ◽  
Rory Pijnenburg ◽  
Wiepke Cahn ◽  
...  

See Vértes and Seidlitz (doi:10.1093/brain/awz353) for a scientific commentary on this article. Is schizophrenia a by-product of human brain evolution? By comparing the human and chimpanzee connectomes, van den Heuvel et al. demonstrate that connections unique to the human brain show greater involvement in schizophrenia pathology. Modifications in service of higher-order brain functions may have rendered the brain more vulnerable to dysfunction.


2021 ◽  
Author(s):  
Yuta Katsumi ◽  
Karen Quigley ◽  
Lisa Feldman Barrett

It is now well known that brain evolution, development, and structure do not respect Western folk categories of mind – that is, the boundaries of those folk categories have never been identified in nature, despite decades of search. Categories for cognitions, emotions, perceptions, and so on, may be useful for describing the mental phenomena that constitute a human mind, but they make a poor starting point for understanding the interplay of mechanisms that create those mental events in the first place. In this paper, we integrate evolutionary, developmental, anatomical, and functional evidence and propose that predictive regulation of the body’s internal systems (allostasis) and modeling the sensory consequences of this regulation (interoception) may be basic functions of the brain that are embedded in coordinated structural and functional gradients. Our approach offers the basis for a coherent, neurobiologically-inspired research program that attempts to explain how a variety of psychological and physical phenomena may emerge from the same biological mechanisms, thus providing an opportunity to unify them under a common explanatory framework that can be used to develop shared vocabulary for theory building and knowledge accumulation.


2015 ◽  
Vol 370 (1663) ◽  
pp. 20140062 ◽  
Author(s):  
Jean-Jacques Hublin ◽  
Simon Neubauer ◽  
Philipp Gunz

A high level of encephalization is critical to the human adaptive niche and emerged among hominins over the course of the past 2 Myr. Evolving larger brains required important adaptive adjustments, in particular regarding energy allocation and life history. These adaptations included a relatively small brain at birth and a protracted growth of highly dependent offspring within a complex social environment. In turn, the extended period of growth and delayed maturation of the brain structures of humans contribute to their cognitive complexity. The current palaeoanthropological evidence shows that, regarding life history and brain ontogeny, the Pleistocene hominin taxa display different patterns and that one cannot simply contrast an ‘ape-model’ to a ‘human-model’. Large-brained hominins such as Upper Pleistocene Neandertals have evolved along their own evolutionary pathway and can be distinguished from modern humans in terms of growth pattern and brain development. The life-history pattern and brain ontogeny of extant humans emerged only recently in the course of human evolution.


Mind Shift ◽  
2021 ◽  
pp. 1-16
Author(s):  
John Parrington

This introductory chapter begins by providing an overview of the power of the human brain, which is displayed in the wonders of modern civilization. Despite the human brain’s capacity for such intellectual and technological feats, we still know astonishingly little about how it achieves them. This deficit in understanding is a problem not only because it means we lack basic knowledge of the biological factors that underlie our human uniqueness, but also because, for all its amazing capabilities, the human mind seems particularly prone to dysfunction. Still, some would argue there is good reason to be optimistic about the prospect of developing new and better treatments for mental disorders in the not-so-distant future. Such optimism is based on the increasing potential to study how the brain works in various important new ways thanks to recent technological innovations. The chapter then considers two overly polarised views of the human mind. Ultimately, this book argues that society radically restructures the human brain within an individual person’s lifetime, and that it has also played a central role in the past history of our species, by shaping brain evolution.


Author(s):  
Frederick L. Coolidge

This chapter reviews some of the fundamentals of evolution, particularly adaptations and exaptations. Adaptations are physical or behavioral features that through natural selection aided survival and reproduction. Exaptations are physical or behavioral features that have been co-opted from their initial adaptive functions and subsequently enhanced fitness. The reuse, recycling, or redeployment of brain neurons for purposes other than their original adaption may be considered a central organizing principle of the brain. The chapter reviews the beginnings of life and presents a timeline of life through the evolution of hominins. The term hominin refers to all current and extinct relatives and ancestors of Homo sapiens, including the australopithecines and habilines, within about the last 6 million years. The chapter introduces the hypothesis that Homo sapiens survived and flourished, instead of Neandertals, Denisovans, and other hominins, because of brain shape differences, which created cognitive differences that enhanced the evolutionary fitness of Homo sapiens.


2019 ◽  
Vol 286 (1911) ◽  
pp. 20191608 ◽  
Author(s):  
Lauren E. Powell ◽  
Robert A. Barton ◽  
Sally E. Street

Life history is a robust correlate of relative brain size: larger-brained mammals and birds have slower life histories and longer lifespans than smaller-brained species. The cognitive buffer hypothesis (CBH) proposes an adaptive explanation for this relationship: large brains may permit greater behavioural flexibility and thereby buffer the animal from unpredictable environmental challenges, allowing for reduced mortality and increased lifespan. By contrast, the developmental costs hypothesis (DCH) suggests that life-history correlates of brain size reflect the extension of maturational processes needed to accommodate the evolution of large brains, predicting correlations with pre-adult life-history phases. Here, we test novel predictions of the hypotheses in primates applied to the neocortex and cerebellum, two major brain structures with distinct developmental trajectories. While neocortical growth is allocated primarily to pre-natal development, the cerebellum exhibits relatively substantial post-natal growth. Consistent with the DCH, neocortical expansion is related primarily to extended gestation while cerebellar expansion to extended post-natal development, particularly the juvenile period. Contrary to the CBH, adult lifespan explains relatively little variance in the whole brain or neocortex volume once pre-adult life-history phases are accounted for. Only the cerebellum shows a relationship with lifespan after accounting for developmental periods. Our results substantiate and elaborate on the role of maternal investment and offspring development in brain evolution, suggest that brain components can evolve partly independently through modifications of distinct developmental phases, and imply that environmental input during post-natal maturation may be particularly crucial for the development of cerebellar function. They also suggest that relatively extended post-natal maturation times provide a developmental mechanism for the marked expansion of the cerebellum in the apes.


2019 ◽  
Vol 93 (4) ◽  
pp. 182-195 ◽  
Author(s):  
Enrique Font ◽  
Roberto García-Roa ◽  
Daniel Pincheira-Donoso ◽  
Pau Carazo

Body size correlates with most structural and functional components of an organism’s phenotype – brain size being a prime example of allometric scaling with animal size. Therefore, comparative studies of brain evolution in vertebrates rely on controlling for the scaling effects of body size variation on brain size variation by calculating brain weight/body weight ratios. Differences in the brain size-body size relationship between taxa are usually interpreted as differences in selection acting on the brain or its components, while selection pressures acting on body size, which are among the most prevalent in nature, are rarely acknowledged, leading to conflicting and confusing conclusions. We address these problems by comparing brain-body relationships from across >1,000 species of birds and non-avian reptiles. Relative brain size in birds is often assumed to be 10 times larger than in reptiles of similar body size. We examine how differences in the specific gravity of body tissues and in body design (e.g., presence/absence of a tail or a dense shell) between these two groups can affect estimates of relative brain size. Using phylogenetic comparative analyses, we show that the gap in relative brain size between birds and reptiles has been grossly exaggerated. Our results highlight the need to take into account differences between taxa arising from selection pressures affecting body size and design, and call into question the widespread misconception that reptile brains are small and incapable of supporting sophisticated behavior and cognition.


Sign in / Sign up

Export Citation Format

Share Document