A long way to understanding cultural evolution

2006 ◽  
Vol 29 (4) ◽  
pp. 358-359 ◽  
Author(s):  
Werner Mende ◽  
Kathleen Wermke

Understanding cultural evolution is one of the most challenging and indispensable scientific tasks for the survival of humankind on our planet. This task demands, besides an adoption of theories and models from biological evolution, theories for culture-specific processes as well. Language evolution and language acquisition offer interesting objects of study in this respect.

Author(s):  
Marieke Woensdregt ◽  
Kenny Smith

Pragmatics is the branch of linguistics that deals with language use in context. It looks at the meaning linguistic utterances can have beyond their literal meaning (implicature), and also at presupposition and turn taking in conversation. Thus, pragmatics lies on the interface between language and social cognition. From the point of view of both speaker and listener, doing pragmatics requires reasoning about the minds of others. For instance, a speaker has to think about what knowledge they share with the listener to choose what information to explicitly encode in their utterance and what to leave implicit. A listener has to make inferences about what the speaker meant based on the context, their knowledge about the speaker, and their knowledge of general conventions in language use. This ability to reason about the minds of others (usually referred to as “mindreading” or “theory of mind”) is a cognitive capacity that is uniquely developed in humans compared to other animals. What we know about how pragmatics (and the underlying ability to make inferences about the minds of others) has evolved. Biological evolution and cultural evolution are the two main processes that can lead to the development of a complex behavior over generations, and we can explore to what extent they account for what we know about pragmatics. In biological evolution, changes happen as a result of natural selection on genetically transmitted traits. In cultural evolution on the other hand, selection happens on skills that are transmitted through social learning. Many hypotheses have been put forward about the role that natural selection may have played in the evolution of social and communicative skills in humans (for example, as a result of changes in food sources, foraging strategy, or group size). The role of social learning and cumulative culture, however, has been often overlooked. This omission is particularly striking in the case of pragmatics, as language itself is a prime example of a culturally transmitted skill, and there is solid evidence that the pragmatic capacities that are so central to language use may themselves be partially shaped by social learning. In light of empirical findings from comparative, developmental, and experimental research, we can consider the potential contributions of both biological and cultural evolutionary mechanisms to the evolution of pragmatics. The dynamics of types of evolutionary processes can also be explored using experiments and computational models.


2003 ◽  
Vol 06 (04) ◽  
pp. 537-558 ◽  
Author(s):  
KENNY SMITH ◽  
HENRY BRIGHTON ◽  
SIMON KIRBY

Language arises from the interaction of three complex adaptive systems — biological evolution, learning, and culture. We focus here on cultural evolution, and present an Iterated Learning Model of the emergence of compositionality, a fundamental structural property of language. Our main result is to show that the poverty of the stimulus available to language learners leads to a pressure for linguistic structure. When there is a bottleneck on cultural transmission, only a language which is generalizable from sparse input data is stable. Language itself evolves on a cultural time-scale, and compositionality is language's adaptation to stimulus poverty.


2008 ◽  
Vol 31 (5) ◽  
pp. 521-522 ◽  
Author(s):  
W. Tecumseh Fitch

AbstractHistorical language change (“glossogeny”), like evolution itself, is a fact; and its implications for the biological evolution of the human capacity for language acquisition (“phylogeny”) have been ably explored by many contemporary theorists. However, Christiansen & Chater's (C&C's) revolutionary call for a replacement of phylogenetic models with glossogenetic cultural models is based on an inadequate understanding of either. The solution to their “logical problem of language evolution” lies before their eyes, but they mistakenly reject it due to a supposed “circularity trap.” Gene/;culture co-evolution poses a series of difficult theoretical and empirical problems that will be resolved by subtle thinking, adequate models, and careful cross-disciplinary research, not by oversimplified manifestos.


2018 ◽  
Author(s):  
Marieke Woensdregt ◽  
Kenny Smith

Pragmatics is the branch of linguistics that deals with language use in context. It looks at the meaning linguistic utterances can have beyond their literal meaning (implicature), and also at presupposition and turn taking in conversation. Thus, pragmatics lies on the interface between language and social cognition.From the point of view of both speaker and listener, doing pragmatics requires reasoning about the minds of others. For instance, a speaker has to think about what knowledge they share with the listener to choose what information to explicitly encode in their utterance and what to leave implicit. A listener has to make inferences about what the speaker meant based on the context, their knowledge about the speaker, and their knowledge of general conventions in language use. This ability to reason about the minds of others (usually referred to as “mindreading” or “theory of mind”) is a cognitive capacity that is uniquely developed in humans compared to other animals.What we know about how pragmatics (and the underlying ability to make inferences about the minds of others) has evolved. Biological evolution and cultural evolution are the two main processes that can lead to the development of a complex behavior over generations, and we can explore to what extent they account for what we know about pragmatics.In biological evolution, changes happen as a result of natural selection on genetically transmitted traits. In cultural evolution on the other hand, selection happens on skills that are transmitted through social learning. Many hypotheses have been put forward about the role that natural selection may have played in the evolution of social and communicative skills in humans (for example, as a result of changes in food sources, foraging strategy, or group size). The role of social learning and cumulative culture, however, has been often overlooked. This omission is particularly striking in the case of pragmatics, as language itself is a prime example of a culturally transmitted skill, and there is solid evidence that the pragmatic capacities that are so central to language use may themselves be partially shaped by social learning.In light of empirical findings from comparative, developmental, and experimental research, we can consider the potential contributions of both biological and cultural evolutionary mechanisms to the evolution of pragmatics. The dynamics of types of evolutionary processes can also be explored using experiments and computational models.Woensdregt, M., & Smith, K. (2017). Pragmatics and Language Evolution. In Aronoff, M. (Ed.), Oxford Research Encyclopedia of Linguistics. Oxford: Oxford University Press. doi:10.1093/acrefore/9780199384655.013.321. Reproduced by permission of Oxford University Press. Published version available at: http://linguistics.oxfordre.com/abstract/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-321?rskey=YdHgxy&result=18


Much has been said at the symposium about the pre-eminent role of the brain in the continuing emergence of man. Tobias has spoken of its explosive enlargement during the last 1 Ma, and how much of its enlargement in individual ontogeny is postnatal. We are born before our brains are fully grown and ‘wired up ’. During our long adolescence we build up internal models of the outside world and of the relations of parts of our bodies to it and to one another. Neurons that are present at birth spread their dendrites and project axons which acquire their myelin sheaths, and establish innumerable contacts with other neurons, over the years. New connections are formed; genetically endowed ones are stamped in or blanked off. People born without arms may grow up to use their toes in skills that are normally manual. Tobias, Darlington and others have stressed the enormous survival value of adaptive behaviour and the ‘positive feedback’ relation between biological and cultural evolution. The latter, the unique product of the unprecedentedly rapid biological evolution of big brains, advances on a time scale unknown to biological evolution.


2018 ◽  
Author(s):  
Kenny Smith

Recent work suggests that linguistic structure develops through cultural evolution, as a consequence of the repeated cycle of learning and use by which languages persist. This work has important implications for our understanding of the evolution of the cognitive basis for language: in particular, human language and the cognitive capacities underpinning it are likely to have been shaped by co-evolutionary processes, where the cultural evolution of linguistic systems is shaped by and in turn shapes the biological evolution of the capacities underpinning language learning. I review several models of this co-evolutionary process, which suggest that the precise relationship between evolved biases in individuals and the structure of linguistic systems depends on the extent to which cultural evolution masks or unmasks individual-level cognitive biases from selection. I finish by discussing how these co-evolutionary models might be extended to cases where the biases involved in learning are themselves shaped by experience, as is the case for language.


Author(s):  
William Hoppitt ◽  
Kevin N. Laland

This chapter describes a variety of approaches to modeling social learning, cultural evolution, and gene-culture coevolution. The model-building exercise typically starts with a set of assumptions about the key processes to be explored, along with the nature of their relations. These assumptions are then translated into the mathematical expressions that constitute the model. The operation of the model is then investigated, normally using a combination of analytical mathematical techniques and simulation, to determine relevant outcomes, such as the equilibrium states or patterns of change over time. The chapter presents examples of the modeling of cultural transmission and considers parallels between cultural and biological evolution. It then discusses theoretical approaches to social learning and cultural evolution, including population-genetic style models of cultural evolution and gene-culture coevolution, neutral models and random copying, social foraging theory, spatially explicit models, reaction-diffusion models, agent-based models, and phylogenetic models.


Author(s):  
Kevin N. Laland

This chapter traces the evolution of human civilization from nomadic hunter-gatherer societies to the advent of agriculture and its large-scale impacts on the world. It describes this history in three ages of adaptive evolution. First, there was the age in which biological evolution dominated, in which we adapted to the circumstances of life in a manner no different from every other creature. Second came the age when gene–culture coevolution was in the ascendency. Through cultural activities, our ancestors set challenges to which they adapted biologically. In doing so, they released the brake that the relatively slow rate of independent environmental change imposes on other species. The results are higher rates of morphological evolution in humans compared to other mammals, with human genetic evolution reported as accelerating more than a hundredfold over the last 40,000 years. Now we live in the third age, where cultural evolution dominates. Cultural practices provide humanity with adaptive challenges, but these are then solved through further cultural activity, before biological evolution gets moving.


2021 ◽  
Author(s):  
Roslyn M Frank

<p>In recent years the relationship between language change and biological evolution has captured the attention of investigators operating in different disciplines, particularly evolutionary biology, AI and A-Life (Zeimke 2001, Hull 2001), as well as linguistics (Croft 2000; Sinha 1999), with each group often bringing radically different conceptualizations of the object under study, namely, “language” itself, to the debate.&nbsp;Over the centuries, meanings associated with the expression “language” have been influenced by mappings of conceptual frames and inputs from the biological sciences onto the entity referred to as “language”. At the same time the prestige of the “science of linguistics” created a feedback mechanism by which the referentiality of “language”, at each stage, was mapped back into the field of evolutionary biology along with the emergent structure(s) of the resulting “blend”. While significant energy has been spent on identifying ways in which biological evolution has been linked to concepts of language evolution (Dörries 2002), little attention has been directed to the nature of the conceptual integration networks that have been produced in the process. This paper examines the way conceptual integration theory can be brought to bear on the “blends” that have been created, focusing primarily on examples drawn from 19th century debates concerning the “language-species-organism analogy” in the emerging field of comparative-historical philology.</p><p>In recent years the relationship between language change and biological evolution has captured the attention of investigators operating in different disciplines, particularly evolutionary biology, AI and A-Life (Zeimke 2001, Hull 2001), as well as linguistics (Croft 2000; Sinha 1999), with each group often bringing radically different conceptualizations of the object under study, namely, “language” itself, to the debate. Over the centuries, meanings associated with the expression “language” have been influenced by mappings of conceptual frames and inputs from the biological sciences onto the entity referred to as “language”. At the same time the prestige of the “science of linguistics” created a feedback mechanism by which the referentiality of “language”, at each stage, was mapped back into the field of evolutionary biology along with the emergent structure(s) of the resulting “blend”. While significant energy has been spent on identifying ways in which biological evolution has been linked to concepts of language evolution (Dörries 2002), little attention has been directed to the nature of the conceptual integration networks that have been produced in the process. This paper examines the way conceptual integration theory can be brought to bear on the “blends” that have been created, focusing primarily on examples drawn from 19th century debates concerning the “language-species-organism analogy” in the emerging field of comparative-historical philology. The document includes Supplemental Materials: Resource Guide and Commentaries.</p>


2021 ◽  
pp. 45-72
Author(s):  
Steven Brown

This chapter examines both the biological and cultural evolution of the arts. Biological evolution of the arts deals with how humans evolved the species-specific capacities to create and appreciate artworks, while cultural evolution is about how artworks themselves, as cultural products, undergo changes in persistence over historical time and geographic location. The study of biological evolution includes both phylogenetic (or historical) and adaptationist (or Darwinian) approaches. The study of cultural evolution of the arts reveals the importance of a ‘creativity/aesthetics cycle’ in which the products of human creativity get appraised for their level of appeal by the aesthetic system, allowing them to either be transmitted to future generations or die out. This unification of creativity and aesthetics has far-reaching implications for both fields of study.


Sign in / Sign up

Export Citation Format

Share Document