Basins of attraction near homoclinic tangencies

1994 ◽  
Vol 14 (2) ◽  
pp. 351-390 ◽  
Author(s):  
J.C. Tatjer ◽  
C. Simó

AbstractWe describe the behaviour of the basin of attraction of the attracting periodic points which appear near a non-degenerate tangential homoclinic point of a dissipative saddle fixed point for one-parameter families of planar diffeomorphisms. This behaviour depends on certain relations between the eigenvalues of the saddle point and on the geometry of the tangency.

1998 ◽  
Vol 01 (02n03) ◽  
pp. 161-180 ◽  
Author(s):  
J. Laugesen ◽  
E. Mosekilde ◽  
Yu. L. Maistrenko ◽  
V. L. Maistrenko

The paper examines the appearance of on-off intermittency and riddled basins of attraction in a system of two coupled one-dimensional maps, each displaying type-III intermittency. The bifurcation curves for the transverse destablilization of low periodic orbits embeded in the synchronized chaotic state are obtained. Different types of riddling bifurcation are discussed, and we show how the existence of an absorbing area inside the basin of attraction can account for the distinction between local and global riddling as well as for the distinction between hysteric and non-hysteric blowout. We also discuss the role of the so-called mixed absorbing area that exists immediately after a soft riddling bifurcation. Finally, we study the on-off intermittency that is observed after a non-hysteric blowout bifurcaton.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Alicia Cordero ◽  
Fazlollah Soleymani ◽  
Juan R. Torregrosa ◽  
Stanford Shateyi

The dynamical behavior of different Steffensen-type methods is analyzed. We check the chaotic behaviors alongside the convergence radii (understood as the wideness of the basin of attraction) needed by Steffensen-type methods, that is, derivative-free iteration functions, to converge to a root and compare the results using different numerical tests. We will conclude that the convergence radii (and the stability) of Steffensen-type methods are improved by increasing the convergence order. The computer programming package MATHEMATICAprovides a powerful but easy environment for all aspects of numerics. This paper puts on show one of the application of this computer algebra system in finding fixed points of iteration functions.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
John Alexander Taborda ◽  
Fabiola Angulo

The aim of this paper is to describe and prove a new method to compute and control the basins of attraction in multistability scenarios and guarantee monostability condition. In particular, the basins of attraction are computed only using a submap, and the coexistence of periodic solutions is controlled through fixed-point inducting control technique, which has been successfully used until now to stabilize unstable periodic orbits. In this paper, however, fixed-point inducting control is used to modify the domains of attraction when there is coexistence of attractors. In order to apply the technique, the periodic orbit whose basin of attraction will be controlled must be computed. Therefore, the fixed-point inducting control is used to stabilize one of the periodic orbits and enhance its basin of attraction. Then, using information provided by the unstable periodic orbits and basins of attractions, the minimum control effort to stabilize the target periodic orbit in all desired ranges is computed. The applicability of the proposed tools is illustrated through two different coupled logistic maps.


2000 ◽  
Vol 20 (6) ◽  
pp. 1859-1883 ◽  
Author(s):  
SAEED ZAKERI

This paper consists of two nearly independent parts, both of which discuss the common theme of biaccessible points in the Julia set $J$ of a quadratic polynomial $f:z\mapsto z^2+c$.In Part I, we assume that $J$ is locally-connected. We prove that the Brolin measure of the set of biaccessible points (through the basin of attraction of infinity) in $J$ is zero except when $f(z)=z^2-2$ is the Chebyshev map for which the corresponding measure is one. As a corollary, we show that a locally-connected quadratic Julia set is not a countable union of embedded arcs unless it is a straight line or a Jordan curve.In Part II, we assume that $f$ has an irrationally indifferent fixed point $\alpha$. If $z$ is a biaccessible point in $J$, we prove that the orbit of $z$ eventually hits the critical point of $f$ in the Siegel case, and the fixed point $\alpha$ in the Cremer case. As a corollary, it follows that the set of biaccessible points in $J$ has Brolin measure zero.


Author(s):  
Sylvain Meignen ◽  
Thomas Oberlin ◽  
Philippe Depalle ◽  
Patrick Flandrin ◽  
Stephen McLaughlin

This paper discusses methods for the adaptive reconstruction of the modes of multicomponent AM–FM signals by their time–frequency (TF) representation derived from their short-time Fourier transform (STFT). The STFT of an AM–FM component or mode spreads the information relative to that mode in the TF plane around curves commonly called ridges . An alternative view is to consider a mode as a particular TF domain termed a basin of attraction . Here we discuss two new approaches to mode reconstruction. The first determines the ridge associated with a mode by considering the location where the direction of the reassignment vector sharply changes, the technique used to determine the basin of attraction being directly derived from that used for ridge extraction. A second uses the fact that the STFT of a signal is fully characterized by its zeros (and then the particular distribution of these zeros for Gaussian noise) to deduce an algorithm to compute the mode domains. For both techniques, mode reconstruction is then carried out by simply integrating the information inside these basins of attraction or domains.


2003 ◽  
Vol 13 (09) ◽  
pp. 2623-2640 ◽  
Author(s):  
Núria Fagella ◽  
Antonio Garijo

We consider the family of entire transcendental maps given by Fλ,m(z)=λzm exp (z) where m≥2. All functions Fλ,m have a superattracting fixed point at z=0, and a critical point at z = -m. In the dynamical plane we study the topology of the basin of attraction of z=0. In the parameter plane we focus on the capture behavior, i.e. λ values such that the critical point belongs to the basin of attraction of z=0. In particular, we find a capture zone for which this basin has a unique connected component, whose boundary is then nonlocally connected. However, there are parameter values for which the boundary of the immediate basin of z=0 is a quasicircle.


2014 ◽  
Vol 36 (3) ◽  
pp. 781-793 ◽  
Author(s):  
ALASTAIR FLETCHER ◽  
DANIEL A. NICKS

We investigate the rate of convergence of the iterates of an $n$-dimensional quasiregular mapping within the basin of attraction of a fixed point of high local index. A key tool is a refinement of a result that gives bounds on the distortion of the image of a small spherical shell. This result also has applications to the rate of growth of quasiregular mappings of polynomial type, and to the rate at which the iterates of such maps can escape to infinity.


2021 ◽  
Vol 183 (2) ◽  
Author(s):  
Juan Neirotti

AbstractWe consider the process of opinion formation, in a society where there is a set of rules B that indicates whether a social instance is acceptable. Public opinion is formed by the integration of the voters’ attitudes which can be either conservative (mostly in agreement with B) or liberal (mostly in disagreement with B and in agreement with peer voters). These attitudes are represented by stable fixed points in the phase space of the system. In this article we study the properties of a perturbative term, mimicking the effects of a publicity campaign, that pushes the system from the basin of attraction of the liberal fixed point into the basin of the conservative point, when both fixed points are equally likely.


1997 ◽  
Vol 9 (2) ◽  
pp. 319-336 ◽  
Author(s):  
K. Pakdaman ◽  
C. P. Malta ◽  
C. Grotta-Ragazzo ◽  
J.-F. Vibert

Little attention has been paid in the past to the effects of interunit transmission delays (representing a xonal and synaptic delays) ontheboundary of the basin of attraction of stable equilibrium points in neural networks. As a first step toward a better understanding of the influence of delay, we study the dynamics of a single graded-response neuron with a delayed excitatory self-connection. The behavior of this system is representative of that of a family of networks composed of graded-response neurons in which most trajectories converge to stable equilibrium points for any delay value. It is shown that changing the delay modifies the “location” of the boundary of the basin of attraction of the stable equilibrium points without affecting the stability of the equilibria. The dynamics of trajectories on the boundary are also delay dependent and influence the transient regime of trajectories within the adjacent basins. Our results suggest that when dealing with networks with delay, it is important to study not only the effect of the delay on the asymptotic convergence of the system but also on the boundary of the basins of attraction of the equilibria.


2007 ◽  
Vol 17 (04) ◽  
pp. 1305-1321 ◽  
Author(s):  
RAYMOND A. ADOMAITIS ◽  
IOANNIS G. KEVREKIDIS ◽  
RAFAEL DE LA LLAVE

We present a computer-assisted analysis of the phase space features and bifurcations of a noninvertible, discrete-time system. Our focus is on the role played by noninvertibility in generating disconnected basins of attraction and the breakup of invariant circle solutions. Transitions between basin of attraction structures are identified and organized according to "levels of complexity," a term we define in this paper. In particular, we present an algorithm that provides a computational approximation to the boundary (in phase space) separating points with different preimage behavior. The interplay between this boundary and other phase space features is shown to be crucial in understanding global bifurcations and transitions in the structure of the basin of attraction.


Sign in / Sign up

Export Citation Format

Share Document