scholarly journals Computing and Controlling Basins of Attraction in Multistability Scenarios

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
John Alexander Taborda ◽  
Fabiola Angulo

The aim of this paper is to describe and prove a new method to compute and control the basins of attraction in multistability scenarios and guarantee monostability condition. In particular, the basins of attraction are computed only using a submap, and the coexistence of periodic solutions is controlled through fixed-point inducting control technique, which has been successfully used until now to stabilize unstable periodic orbits. In this paper, however, fixed-point inducting control is used to modify the domains of attraction when there is coexistence of attractors. In order to apply the technique, the periodic orbit whose basin of attraction will be controlled must be computed. Therefore, the fixed-point inducting control is used to stabilize one of the periodic orbits and enhance its basin of attraction. Then, using information provided by the unstable periodic orbits and basins of attractions, the minimum control effort to stabilize the target periodic orbit in all desired ranges is computed. The applicability of the proposed tools is illustrated through two different coupled logistic maps.

Author(s):  
Iftichar Mudhar Talb Al-Shraa

Let g be a continuous map from 8 to itself has a fixed point at (0,0), we prove that g has a twist periodic orbit if there is a rational rotation number.


2008 ◽  
Vol 15 (4) ◽  
pp. 675-680 ◽  
Author(s):  
Y. Saiki ◽  
M. Yamada

Abstract. Unstable periodic orbit (UPO) recently has become a keyword in analyzing complex phenomena in geophysical fluid dynamics and space physics. In this paper, sets of UPOs in low dimensional maps are theoretically or systematically found, and time averaged properties along UPOs are studied, in relation to those of chaotic orbits.


1998 ◽  
Vol 08 (05) ◽  
pp. 1013-1023
Author(s):  
Byoung-Cheon Lee ◽  
Bong-Gyun Kim ◽  
Bo-Hyeun Wang

In our previous research [Lee et al., 1995], we demonstrated that return map control and adaptive tracking method can be used together to locate, stabilize and track unstable periodic orbits (UPO) automatically. Our adaptive tracking method is based on the control bifurcation (CB) phenomenon which is another route to chaos generated by feedback control. Along the CB route, there are numerous driven periodic orbits (DPOs), and they can be good control targets if small system modification is allowed. In this paper, we introduce a new control concept of global bifurcation approximation (GBA) which is quite different from the traditional local linear approximation (LLA). Based on this approach, we also demonstrate that chaotic attractor can be induced from a periodic orbit. If feedback control is applied along the direction to chaos, small erratic fluctuations of a periodic orbit is magnified and the chaotic attractor is induced. One of the special features of CB is the existence of irreversible orbit (IO) which is generated at the strong extreme of feedback control and has irreversible property. We show that IO induces a hysteresis phenomenon in CB, and we discuss how to keep away from IO.


1998 ◽  
Vol 01 (02n03) ◽  
pp. 161-180 ◽  
Author(s):  
J. Laugesen ◽  
E. Mosekilde ◽  
Yu. L. Maistrenko ◽  
V. L. Maistrenko

The paper examines the appearance of on-off intermittency and riddled basins of attraction in a system of two coupled one-dimensional maps, each displaying type-III intermittency. The bifurcation curves for the transverse destablilization of low periodic orbits embeded in the synchronized chaotic state are obtained. Different types of riddling bifurcation are discussed, and we show how the existence of an absorbing area inside the basin of attraction can account for the distinction between local and global riddling as well as for the distinction between hysteric and non-hysteric blowout. We also discuss the role of the so-called mixed absorbing area that exists immediately after a soft riddling bifurcation. Finally, we study the on-off intermittency that is observed after a non-hysteric blowout bifurcaton.


1985 ◽  
Vol 5 (4) ◽  
pp. 501-517 ◽  
Author(s):  
Lluís Alsedà ◽  
Jaume Llibre ◽  
Michał Misiurewicz ◽  
Carles Simó

AbstractLet f be a continuous map from the circle into itself of degree one, having a periodic orbit of rotation number p/q ≠ 0. If (p, q) = 1 then we prove that f has a twist periodic orbit of period q and rotation number p/q (i.e. a periodic orbit which behaves as a rotation of the circle with angle 2πp/q). Also, for this map we give the best lower bound of the topological entropy as a function of the rotation interval if one of the endpoints of the interval is an integer.


Author(s):  
Z. Al-Zamel ◽  
B. F. Feeny

Abstract Unstable periodic orbits of the saddle type are often extracted from chaotic sets. We use the recurrence method of extracting segments of the chaotic data to approximate the true unstable periodic orbit. Then nearby trajectories are then examined to obtain the dynamics local to the extracted orbit, in terms of an affine map. The affine map is then used to estimate the true orbit. Accuracy is evaluated in examples including well known maps and the Duffing oscillator.


2002 ◽  
Vol 12 (05) ◽  
pp. 1057-1065 ◽  
Author(s):  
YANXING SONG ◽  
XINGHUO YU ◽  
GUANRONG CHEN ◽  
JIAN-XIN XU ◽  
YU-PING TIAN

In this paper, a time-delayed chaos control method based on repetitive learning is proposed. A general repetitive learning control structure based on the invariant manifold of the chaotic system is given. The integration of the repetitive learning control principle and the time-delayed chaos control technique enables adaptive learning of appropriate control actions from learning cycles. In contrast to the conventional repetitive learning control, no exact knowledge (analytic representation) of the target unstable periodic orbits is needed, except for the time delay constant, which can be identified via either experiments or adaptive learning. The controller effectively stabilizes the states of the continuous-time chaos on desired unstable periodic orbits. Simulations on the Duffing and Lorenz chaotic systems are provided to verify the design and analysis.


Author(s):  
Ramon Comasolivas ◽  
Joseba Quevedo ◽  
Teresa Escobet ◽  
Antoni Escobet ◽  
Juli Romera

This paper presents the modeling and robust low-level control design of a redundant mobile robot with four omnidirectional wheels, the iSense Robotic (iSRob) platform, that was designed to test safe control algorithms. iSRob is a multivariable nonlinear system subject to parameter uncertainties mainly due to friction forces. A multilinear model is proposed to approximate the behavior of the system, and the parameters of these models are estimated from closed-loop experimental data applying Gauss–Newton techniques. A robust control technique, quantitative feedback theory (QFT), is applied to design a proportional–integral (PI) controller for robust low-level control of the iSRob system, being this the main contribution of the paper. The designed controller is implemented, tested, and compared with a gain-scheduling PI-controller based on pole assignment. The experimental results show that robust stability and control effort margins against system uncertainties are satisfied and demonstrate better performance than the other controllers used for comparison.


Sign in / Sign up

Export Citation Format

Share Document