Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line

2009 ◽  
Vol 30 (2) ◽  
pp. 565-594 ◽  
Author(s):  
JOSÉ ALISTE-PRIETO

AbstractIn this paper, we study translation sets for non-decreasing maps of the real line with a pattern-equivariant displacement with respect to a quasicrystal. First, we establish a correspondence between these maps and self maps of the continuous hull associated with the quasicrystal that are homotopic to the identity and preserve orientation. Then, by using first-return times and induced maps, we provide a partial description for the translation set of the latter maps in the case where they have fixed points and obtain the existence of a unique translation number in the case where they do not have fixed points. Finally, we investigate the existence of a semiconjugacy from a fixed-point-free map homotopic to the identity on the hull to the translation given by its translation number. We concentrate on semiconjugacies that are also homotopic to the identity and, under a boundedness condition, we prove a generalization of Poincaré’s theorem, finding a sufficient condition for such a semiconjugacy to exist depending on the translation number of the given map.

Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 132
Author(s):  
Youssef Errai ◽  
El Miloudi Marhrani ◽  
Mohamed Aamri

We use interpolation to obtain a common fixed point result for a new type of Ćirić–Reich–Rus-type contraction mappings in metric space. We also introduce a new concept of g-interpolative Ćirić–Reich–Rus-type contractions in b-metric spaces, and we prove some fixed point results for such mappings. Our results extend and improve some results on the fixed point theory in the literature. We also give some examples to illustrate the given results.


1987 ◽  
Vol 36 (3) ◽  
pp. 469-474 ◽  
Author(s):  
Bau-Sen Du

Let I be the unit interval [0, 1] of the real line. For integers k ≥ 1 and n ≥ 2, we construct simple piecewise monotonic expanding maps Fk, n in C0 (I, I) with the following three properties: (1) The positive integer n is an expanding constant for Fk, n for all k; (2) The topological entropy of Fk, n is greater than or equal to log n for all k; (3) Fk, n has periodic points of least period 2k · 3, but no periodic point of least period 2k−1 (2m+1) for any positive integer m. This is in contrast to the fact that there are expanding (but not piecewise monotonic) maps in C0(I, I) with very large expanding constants which have exactly one fixed point, say, at x = 1, but no other periodic point.


2001 ◽  
Vol 38 (2) ◽  
pp. 570-581 ◽  
Author(s):  
Rafał Kulik ◽  
Ryszard Szekli

Daley and Vesilo (1997) introduced long-range count dependence (LRcD) for stationary point processes on the real line as a natural augmentation of the classical long-range dependence of the corresponding interpoint sequence. They studied LRcD for some renewal processes and some output processes of queueing systems, continuing the previous research on such processes of Daley (1968), (1975). Subsequently, Daley (1999) showed that a necessary and sufficient condition for a stationary renewal process to be LRcD is that under its Palm measure the generic lifetime distribution has infinite second moment. We show that point processes dominating, in a sense of stochastic ordering, LRcD point processes are LRcD, and as a corollary we obtain that for arbitrary stationary point processes with finite intensity a sufficient condition for LRcD is that under Palm measure the interpoint distances are positively dependent (associated) with infinite second moment. We give many examples of LRcD point processes, among them exchangeable, cluster, moving average, Wold, semi-Markov processes and some examples of LRcD point processes with finite second Palm moment of interpoint distances. These examples show that, in general, the condition of infiniteness of the second moment is not necessary for LRcD. It is an open question whether the infinite second Palm moment of interpoint distances suffices to make a stationary point process LRcD.


2018 ◽  
Vol 68 (1) ◽  
pp. 173-180
Author(s):  
Renata Wiertelak

Abstract In this paper will be considered density-like points and density-like topology in the family of Lebesgue measurable subsets of real numbers connected with a sequence 𝓙= {Jn}n∈ℕ of closed intervals tending to zero. The main result concerns necessary and sufficient condition for inclusion between that defined topologies.


2001 ◽  
Vol 38 (02) ◽  
pp. 570-581 ◽  
Author(s):  
Rafał Kulik ◽  
Ryszard Szekli

Daley and Vesilo (1997) introduced long-range count dependence (LRcD) for stationary point processes on the real line as a natural augmentation of the classical long-range dependence of the corresponding interpoint sequence. They studied LRcD for some renewal processes and some output processes of queueing systems, continuing the previous research on such processes of Daley (1968), (1975). Subsequently, Daley (1999) showed that a necessary and sufficient condition for a stationary renewal process to be LRcD is that under its Palm measure the generic lifetime distribution has infinite second moment. We show that point processes dominating, in a sense of stochastic ordering, LRcD point processes are LRcD, and as a corollary we obtain that for arbitrary stationary point processes with finite intensity a sufficient condition for LRcD is that under Palm measure the interpoint distances are positively dependent (associated) with infinite second moment. We give many examples of LRcD point processes, among them exchangeable, cluster, moving average, Wold, semi-Markov processes and some examples of LRcD point processes with finite second Palm moment of interpoint distances. These examples show that, in general, the condition of infiniteness of the second moment is not necessary for LRcD. It is an open question whether the infinite second Palm moment of interpoint distances suffices to make a stationary point process LRcD.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Risong Li ◽  
Tianxiu Lu

In this paper, we study some chaotic properties of s-dimensional dynamical system of the form Ψa1,a2,…,as=gsas,g1a1,…,gs−1as−1, where ak∈Hk for any k∈1,2,…,s, s≥2 is an integer, and Hk is a compact subinterval of the real line ℝ=−∞,+∞ for any k∈1,2,…,s. Particularly, a necessary and sufficient condition for a cyclic permutation map Ψa1,a2,…,as=gsas,g1a1,…,gs−1as−1 to be LY-chaotic or h-chaotic or RT-chaotic or D-chaotic is obtained. Moreover, the LY-chaoticity, h-chaoticity, RT-chaoticity, and D-chaoticity of such a cyclic permutation map is explored. Also, we proved that the topological entropy hΨ of such a cyclic permutation map is the same as the topological entropy of each of the following maps: gj∘gj−1∘⋯∘g1l∘gs∘gs−1∘⋯∘gj+1, if j=1,…,s−1and gs∘gs−1∘⋯∘g1, and that Ψ is sensitive if and only if at least one of the coordinates maps of Ψs is sensitive.


Author(s):  
ADAM CHAPMAN ◽  
SOLOMON VISHKAUTSAN

Abstract We study the discrete dynamics of standard (or left) polynomials $f(x)$ over division rings D. We define their fixed points to be the points $\lambda \in D$ for which $f^{\circ n}(\lambda )=\lambda $ for any $n \in \mathbb {N}$ , where $f^{\circ n}(x)$ is defined recursively by $f^{\circ n}(x)=f(f^{\circ (n-1)}(x))$ and $f^{\circ 1}(x)=f(x)$ . Periodic points are similarly defined. We prove that $\lambda $ is a fixed point of $f(x)$ if and only if $f(\lambda )=\lambda $ , which enables the use of known results from the theory of polynomial equations, to conclude that any polynomial of degree $m \geq 2$ has at most m conjugacy classes of fixed points. We also show that in general, periodic points do not behave as in the commutative case. We provide a sufficient condition for periodic points to behave as expected.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3495-3499 ◽  
Author(s):  
Abhijit Pant ◽  
R.P. Pant

The aim of the present paper is to show the significance of the concept of orbital continuity introduced by Ciric. We prove that orbital continuity of a pair of R-weak commuting self-mappings of type Af or of type A1 of a complete metric space is equivalent to fixed point property under Jungck type contraction. We also establish a situation in which orbital continuity is a necessary and sufficient condition for the existence of a common fixed point of a pair of mappings yet the mappings are necessarily discontinuous at the fixed point.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Tawseef Rashid ◽  
Qamrul Haq Khan ◽  
Nabil Mlaiki ◽  
Hassen Aydi

In this article, we discuss a new version of metric fixed point theory. The application of this newly introduced concept is to find some fixed point results where many well-known results in literature cannot be applied. We give some examples to illustrate the given concepts and obtained results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Muhammad Nazam ◽  
Hüseyin Işik ◽  
Khalil Javed ◽  
Muhammad Naeem ◽  
Muhammad Arshad

The aim of this study is to present fixed point results in the setting of partial b -metric spaces. A different type of contractions is used to prove fixed point results in the given space, which are real generalization of many well-known results. The readers are also provided with some very interesting examples to illustrate the feasibility of the proposed work.


Sign in / Sign up

Export Citation Format

Share Document