Entropy of $C^\ast$-dynamical systems defined by bitstreams

1998 ◽  
Vol 18 (4) ◽  
pp. 859-874 ◽  
Author(s):  
V. YA. GOLODETS ◽  
ERLING ST&\Oslash;RMER

We study automorphisms of the CAR-algebra obtained from binary shifts. We consider cases when the $C^\ast$-dynamical system is asymptotically abelian, is proximally asymptotically abelian, is an entropic $K$-system or has completely positive entropy. The entropy is computed in several cases.

2000 ◽  
Vol 20 (5) ◽  
pp. 1355-1370 ◽  
Author(s):  
E. GLASNER ◽  
J.-P. THOUVENOT ◽  
B. WEISS

This paper treats the Pinsker algebra of a dynamical system in a way which avoids the use of an ordering on the acting group. This enables us to prove some of the classical results about entropy and the Pinsker algebra in the general setup of measure-preserving dynamical systems, where the acting group is a discrete countable amenable group. We prove a basic disjointness theorem which asserts the relative disjointness in the sense of Furstenberg, of $0$-entropy extensions from completely positive entropy (c.p.e.) extensions. This theorem is used to prove several classical results in the general setup. For example, we show that the Pinsker factor of a product system is equal to the product of the Pinsker factors of the component systems. Another application is to obtain a generalization (as well as a simpler proof) of the quasifactor theorem for $0$-entropy systems of Glasner and Weiss.


2013 ◽  
Vol 34 (6) ◽  
pp. 2054-2065 ◽  
Author(s):  
RONNIE PAVLOV

AbstractA topological dynamical system was defined by Blanchard [Fully Positive Topological Entropy and Topological Mixing (Symbolic Dynamics and Applications (in honor of R. L. Adler), 135). American Mathematical Society Contemporary Mathematics, Providence, RI, 1992, pp. 95–105] to have topologically completely positive entropy (or TCPE) if its only zero entropy factor is the dynamical system consisting of a single fixed point. For ${ \mathbb{Z} }^{d} $ shifts of finite type, we give a simple condition equivalent to having TCPE. We use our characterization to derive a similar equivalent condition to TCPE for the subclass of ${ \mathbb{Z} }^{d} $ group shifts, which was proved by Lind and Schmidt in the abelian case [Homoclinic points of algebraic ${ \mathbb{Z} }^{d} $-actions. J. Amer. Math. Soc. 12(4) (1999), 953–980] and by Boyle and Schraudner in the general case [${ \mathbb{Z} }^{d} $ group shifts and Bernoulli factors. Ergod. Th. & Dynam. Sys. 28(2) (2008), 367–387]. We also give an example of a ${ \mathbb{Z} }^{2} $ shift of finite type which has TCPE but is not even topologically transitive, and prove a result about block gluing ${ \mathbb{Z} }^{d} $ SFTs motivated by our characterization of TCPE.


2011 ◽  
Vol 32 (3) ◽  
pp. 919-940 ◽  
Author(s):  
ANTHONY H. DOOLEY ◽  
GUOHUA ZHANG

AbstractIf a countable amenable group G contains an infinite subgroup Γ, one may define, from a measurable action of Γ, the so-called co-induced measurable action of G. These actions were defined and studied by Dooley, Golodets, Rudolph and Sinelsh’chikov. In this paper, starting from a topological action of Γ, we define the co-induced topological action of G. We establish a number of properties of this construction, notably, that the G-action has the topological entropy of the Γ-action and has uniformly positive entropy (completely positive entropy, respectively) if and only if the Γ-action has uniformly positive entropy (completely positive entropy, respectively). We also study the Pinsker algebra of the co-induced action.


Author(s):  
CARLO PANDISCIA

An open C*-dynamical systems is a triple {𝔄, Φ, φ} where 𝔄 is a C* algebra with unit, φ as its state, Φ : 𝔄 → 𝔄 a unital completely positive map with φ ◦ Φ = φ. Such system is called purely implementable if there exists a representation π of 𝔄 in the bounded operators on Hilbert spaces [Formula: see text], an isometry [Formula: see text] and a V-invariant vector [Formula: see text] such that π(Φ(a)) = V*π(a)V and φ(a) = 〈Ω, π(a)Ω〉 for all a ∈ 𝔄, with Ω cyclic vector for the algebra generated by π(𝔄) and V. The quadruple [Formula: see text] is said be a covariant GNS representation of the open C*-dynamical system. We prove that every open C*-dynamical system is purely implementable. In the case when the dynamics Φ is a *-homomorphism this result was obtained by Niculescu Ströh and Zsidó. Moreover we prove that, in the case of *-homomorphisms, the above-mentioned construction provides an alternative construction of a minimal dilation in the sense of Kümmerer in which the dilation of the dynamics Φ has the same ergodic properties as Φ.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 379
Author(s):  
Miguel Abadi ◽  
Vitor Amorim ◽  
Sandro Gallo

From a physical/dynamical system perspective, the potential well represents the proportional mass of points that escape the neighbourhood of a given point. In the last 20 years, several works have shown the importance of this quantity to obtain precise approximations for several recurrence time distributions in mixing stochastic processes and dynamical systems. Besides providing a review of the different scaling factors used in the literature in recurrence times, the present work contributes two new results: (1) For ϕ-mixing and ψ-mixing processes, we give a new exponential approximation for hitting and return times using the potential well as the scaling parameter. The error terms are explicit and sharp. (2) We analyse the uniform positivity of the potential well. Our results apply to processes on countable alphabets and do not assume a complete grammar.


1989 ◽  
Vol 03 (15) ◽  
pp. 1185-1188 ◽  
Author(s):  
J. SEIMENIS

We develop a method to find solutions of the equations of motion in Hamiltonian Dynamical Systems. We apply this method to the system [Formula: see text] We study the case a → 0 and we find that in this case the system has an infinite number of period dubling bifurcations.


2021 ◽  
pp. 102986492098831
Author(s):  
Andrea Schiavio ◽  
Pieter-Jan Maes ◽  
Dylan van der Schyff

In this paper we argue that our comprehension of musical participation—the complex network of interactive dynamics involved in collaborative musical experience—can benefit from an analysis inspired by the existing frameworks of dynamical systems theory and coordination dynamics. These approaches can offer novel theoretical tools to help music researchers describe a number of central aspects of joint musical experience in greater detail, such as prediction, adaptivity, social cohesion, reciprocity, and reward. While most musicians involved in collective forms of musicking already have some familiarity with these terms and their associated experiences, we currently lack an analytical vocabulary to approach them in a more targeted way. To fill this gap, we adopt insights from these frameworks to suggest that musical participation may be advantageously characterized as an open, non-equilibrium, dynamical system. In particular, we suggest that research informed by dynamical systems theory might stimulate new interdisciplinary scholarship at the crossroads of musicology, psychology, philosophy, and cognitive (neuro)science, pointing toward new understandings of the core features of musical participation.


2015 ◽  
Vol 15 (02) ◽  
pp. 1550010
Author(s):  
Sheng Huang ◽  
Mikael Skoglund

This note proves that an induced transformation with respect to a finite measure set of a recurrent asymptotically mean stationary dynamical system with a sigma-finite measure is asymptotically mean stationary. Consequently, the Shannon–McMillan–Breiman theorem, as well as the Shannon–McMillan theorem, holds for all reduced processes of any finite-state recurrent asymptotically mean stationary random process. As a by-product, a ratio ergodic theorem for asymptotically mean stationary dynamical systems is presented.


1998 ◽  
Vol 18 (2) ◽  
pp. 471-486 ◽  
Author(s):  
T. B. WARD

We show that for almost every ergodic $S$-integer dynamical system the radius of convergence of the dynamical zeta function is no larger than $\exp(-\frac{1}{2}h_{\rm top})<1$. In the arithmetic case almost every zeta function is irrational.We conjecture that for almost every ergodic $S$-integer dynamical system the radius of convergence of the zeta function is exactly $\exp(-h_{\rm top})<1$ and the zeta function is irrational.In an important geometric case (the $S$-integer systems corresponding to isometric extensions of the full $p$-shift or, more generally, linear algebraic cellular automata on the full $p$-shift) we show that the conjecture holds with the possible exception of at most two primes $p$.Finally, we explicitly describe the structure of $S$-integer dynamical systems as isometric extensions of (quasi-)hyperbolic dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document