scholarly journals White Dwarfs

1994 ◽  
Vol 146 ◽  
pp. 71-78
Author(s):  
Peter Thejll

It is the intention of this review to explain what white dwarfs are and why it is interesting to study them, and why the H+2molecule is of special interest.The evolution, from start to finish, of a star of mass less than about 2 solar masses (M⊙), can roughly be summarized as follows:–A cloud of gas contracts from the interstellar medium until hydrogen ignites at the center and amain sequence(MS) star forms. H is transformed to He and the MS phase continues until H is exhausted in the stellar core.–H continues burning in a shell outside the He core while the core contracts. He “ashes” are added to the core, and ared giantstar is formed as the envelope expands. The star evolves up the Red Giant Branch (RGB) (i.e. it becomes more and more luminous and the surface cools).–Towards the end of the RGB phase, mass-loss from the upper layers increases until helium to carbon burning in the core ignites suddenly under degenerate conditions – this is called theHelium Flash(HF). The HF terminates the RGB evolution, and therefore also the mass-loss and the growth of the stellar core.–The star readjusts its structure and the He-core burns steadily on thehorizontal branch(HB) (a phase of nearly-constant luminosity) until fuel is exhausted in the He-core.–Then the C/O core contracts anew and the expansion of the envelope, and the growth of the core, during He-shell burning, mimics RGB evolution but relatively little mass is added to the core this time.–The second ascent of the giant branch (the so-called Asymptotic Giant Branch, or AGB) continues with increased mass loss towards the end–Rapid detachment of a considerable fraction of the remaining envelope and the hot core takes place, sometimes observable as thePlanetary Nebulae(PN) phase.–The PN is dispersed as the core contracts to a white dwarf (WD).–The WD cools for a long time, as internal kinetic energy and latent heat is released.

2020 ◽  
Vol 638 ◽  
pp. A30
Author(s):  
Tiara Battich ◽  
Leandro G. Althaus ◽  
Alejandro H. Córsico

Context. Two of the possible channels for the formation of low-mass (M⋆ ≲ 0.5 M⊙) hydrogen-deficient white dwarfs are the occurrence of a very-late thermal pulse after the asymptotic giant-branch phase or a late helium-flash onset in an almost stripped core of a red giant star. Aims. We aim to asses the potential of asteroseismology to distinguish between the hot flasher and the very-late thermal pulse scenarios for the formation of low-mass hydrogen-deficient white dwarfs. Methods. We computed the evolution of low-mass hydrogen-deficient white dwarfs from the zero-age main sequence in the context of the two evolutionary scenarios. We explore the pulsation properties of the resulting models for effective temperatures characterizing the instability strip of pulsating helium-rich white dwarfs. Results. We find that there are significant differences in the periods and in the period spacings associated with low radial-order (k ≲ 10) gravity modes for white-dwarf models evolving within the instability strip of the hydrogen-deficient white dwarfs. Conclusions. The measurement of the period spacings for pulsation modes with periods shorter than ∼500 s may be used to distinguish between the two scenarios. Moreover, period-to-period asteroseismic fits of low-mass pulsating hydrogen-deficient white dwarfs can help to determine their evolutionary history.


2011 ◽  
Vol 7 (S281) ◽  
pp. 52-59
Author(s):  
Enrique García–Berro

AbstractI review our current understanding of the evolution of stars which experience carbon burning under conditions of partial electron degeneracy and ultimately become thermally pulsing “super” asymptotic giant branch (SAGB) stars with electron-degenerate cores composed primarily of oxygen and neon. The range in stellar mass over which this occurs is very narrow and the interior evolutionary characteristics vary rapidly over this range. Consequently, while those stars with larger masses (~11 M⊙) are likely to undergo electron-capture accretion induced collapse, those models with smaller masses (8.5 ≲ M/M⊙ ≲ 10.5) will presumably form massive (M ≳ 1.1 M⊙) white dwarfs. The final outcome depends sensitively on the adopted mass-loss rates, the chemical composition of the massive envelopes, and on the adopted prescription for convective mixing.


1989 ◽  
Vol 114 ◽  
pp. 29-43 ◽  
Author(s):  
Italo Mazzitelli

AbstractThe main evolutionary phases having some interest for the formation of the remnant white dwarf are discussed, starting from the core helium burning phase, in the attempt of evaluating a theoretical relation between initial main sequence mass and final white dwarf mass. Several difficulties, mainly due (but not only) to uncertainties in the theory of mass loss, have been met, so that only a fiducial bona fide correlation can be drawn. The mass function of population I white dwarfs has probably a secondary maximum at M = 0.9 – 1 Me.


1981 ◽  
Vol 4 (2) ◽  
pp. 145-148
Author(s):  
P. R. Wood

In this review, I will be concentrating on problems related to the evolution of stars on the asymptotic giant branch (AGB). AGB stars are defined as stars which have completed core helium burning and have subsequently developed degenerate carbon/oxygen cores surrounded by hydrogen and helium burning shells; such stars have main sequence masses M≤9 M⊙ (Paczynski 1971; Becker and Iben 1980). In the HR diagram most AGB stars sit on the red giant branch. An exception to this rule occurs in Population II systems, where the AGB stars evolve asymptotically to the red giant branch from the blue side as the luminosity increases after completion of core helium burning on the horizontal branch.


Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


1984 ◽  
Vol 108 ◽  
pp. 195-206
Author(s):  
Jeremy Mould

Recent observations in both the field and the clusters of the Magellanic Clouds suggest a higher mass loss rate during or at the end of the asymptotic giant branch phase than previously supposed. Recent theoretical investigations offer an explanation for the frequency of carbon stars in the Clouds, but a rich parameter space remains to be explored, before detailed agreement can be expected.


2019 ◽  
Vol 625 ◽  
pp. A87 ◽  
Author(s):  
María E. Camisassa ◽  
Leandro G. Althaus ◽  
Alejandro H. Córsico ◽  
Francisco C. De Gerónimo ◽  
Marcelo M. Miller Bertolami ◽  
...  

Ultra-massive white dwarfs are powerful tools used to study various physical processes in the asymptotic giant branch (AGB), type Ia supernova explosions, and the theory of crystallization through white dwarf asteroseismology. Despite the interest in these white dwarfs, there are few evolutionary studies in the literature devoted to them. Here we present new ultra-massive white dwarf evolutionary sequences that constitute an improvement over previous ones. In these new sequences we take into account for the first time the process of phase separation expected during the crystallization stage of these white dwarfs by relying on the most up-to-date phase diagram of dense oxygen/neon mixtures. Realistic chemical profiles resulting from the full computation of progenitor evolution during the semidegenerate carbon burning along the super-AGB phase are also considered in our sequences. Outer boundary conditions for our evolving models are provided by detailed non-gray white dwarf model atmospheres for hydrogen and helium composition. We assessed the impact of all these improvements on the evolutionary properties of ultra-massive white dwarfs, providing updated evolutionary sequences for these stars. We conclude that crystallization is expected to affect the majority of the massive white dwarfs observed with effective temperatures below 40 000 K. Moreover, the calculation of the phase separation process induced by crystallization is necessary to accurately determine the cooling age and the mass-radius relation of massive white dwarfs. We also provide colors in the Gaia photometric bands for our H-rich white dwarf evolutionary sequences on the basis of new model atmospheres. Finally, these new white dwarf sequences provide a new theoretical frame to perform asteroseismological studies on the recently detected ultra-massive pulsating white dwarfs.


1989 ◽  
Vol 114 ◽  
pp. 454-457
Author(s):  
T.D. Oswalt ◽  
E.M. Sion

Luyten [1,2] and Giclas et al. [3,4] list over 500 known common proper motion binaries (CPMBs) which, on the basis of proper motion and estimated colors, are expected to contain at least one white dwarf (WD) component, usually paired with a late type main sequence (MS) star. Preliminary assessments of the CPMBs suggest that nearly all are physical pairs [5,6]. In this paper we address the issue of whether significant orbital expansion has occurred as a consequence of the post-MS mass loss expected to accompany the formation of the WDs in CPMBs.Though the CPMB sample remains largely unobserved, a spectroscopic survey of over three dozen CPMBs by Oswalt [5] found that nearly all faint components of Luyten and Giclas color class “a-f” and “+1”, respectively, or bluer were a WD. This tendency was also evident in a smaller sample studied by Greenstein [7]. Conversely, nearly all CPMBs having two components of color class “g-k” and “+3” or redder were MS+MS pairs. With the caveat that such criteria discriminate against CPMBs containing cool (but rare) WDs, they nonetheless provide a crude means of obtaining statistically significant samples for the comparison of orbital separations: 209 highly probable WD+MS pairs and 109 MS+MS pairs.


1994 ◽  
Vol 146 ◽  
pp. 113-133
Author(s):  
Hans Olofsson

Red giant stars on the asymptotic giant branch (AGB), AGB-stars, lose copious amounts of matter in a slow stellar wind (Olofsson 1993). Mass loss rates in excess of 10-4M⊙yr-1have been measured. The primary observational consequence of this mass loss is the formation of an expanding envelope of gas and dust, a circumstellar envelope (CSE), that surrounds the star. This is a truly extended atmosphere that continues thousands of stellar radii away from the star. At the highest mass loss rates (which probably occur at the end of the AGB evolution) the CSE becomes so opaque that the photosphere is hidden and essentially all information about the object stems from the circumstellar emission. At some point on the AGB a star may change from being O-rich (i.e., the abundance of O is higher than that of C) to becoming C-rich (i.e., a carbon star where the abundance of C is higher than that of O) as a result of nuclear-processed material being dredged up to the surface. The chemical composition of the CSE will follow that of the central star, although with some time delay so that there may be some rare cases of O-rich CSEs around carbon stars. The mass loss decreases and changes its nature as the star leaves the AGB and starts its post-AGB evolution. Eventually the star becomes hot enough to ionize the inner part of the AGB-CSE and a planetary nebula (PN) is formed. The ultimate fate of the star is a long life as a slowly cooling white dwarf. The CSE will gradually disperse and its metal-enriched matter will mix with the interstellar medium, and thereby it contributes to the chemical evolution of a galaxy. The intense mass loss makes it possible for stars as massive as 8 M⊙, i.e., the bulk of all stars in a galaxy, to follow this evolutionary sequence. Similar CSEs are also found around supergiants.


1979 ◽  
Vol 83 ◽  
pp. 371-374 ◽  
Author(s):  
H. J. Falk ◽  
R. Mitalas

Evolutionary tracks for a 30 M⊙ star with mass loss rates (0.0, 1.0, 2.5, 5.0, 10.0)x10−7 M⊙/yr have been calculated. The effect of the different rates on the main sequence lifetime and on the effective temperature of the core He burning is discussed.


Sign in / Sign up

Export Citation Format

Share Document