scholarly journals A Southern Sky Survey of Low Mass Stars and Brown Dwarfs

1995 ◽  
Vol 148 ◽  
pp. 296-300
Author(s):  
Andrew D. Thackrah ◽  
Michael R. S. Hawkins

AbstractWe are conducting a survey of the southern sky to study the properties of the lowest mass stars and the sub-stellar brown dwarf population thought to exist at masses below 0.08 M⊙. The survey makes use of plates from the UK and ESO Schmidt telescopes, using the new SuperCOSMOS plate measuring machine at Edinburgh to provide a catalogue of photographic BRI colours and proper motion measurements. Candidates are selected by extreme R–I colour (> 2.5) to a plate-limited magnitude of I ≈ 19.0 and R ≈ 21.0. The size of the survey is only limited by the progress of the UK Schmidt I band survey and the availability of photometric data for calibration of SuperCOSMOS measurements. It is anticipated that the survey will form part of a multi-colour proper motion database of southern sky objects.

2015 ◽  
Vol 10 (S314) ◽  
pp. 49-53
Author(s):  
Jonathan Gagné ◽  
David Lafrenière ◽  
René Doyon ◽  
Jacqueline K. Faherty ◽  
Lison Malo ◽  
...  

AbstractWe describe in this work the BASS survey for brown dwarfs in young moving groups of the solar neighborhood, and summarize the results that it generated. These include the discovery of the 2MASS J01033563–5515561 (AB)b and 2MASS J02192210–3925225 B young companions near the deuterium-burning limit as well as 44 new low-mass stars and 69 new brown dwarfs with a spectroscopically confirmed low gravity. Among those, ~20 have estimated masses within the planetary regime, one is a new L4 γ bona fide member of AB Doradus, three are TW Hydrae candidates with later spectral types (L1–L4) than all of its previously known members and six are among the first contenders for low-gravity ≥ L5 β/γ brown dwarfs, reminiscent of WISEP J004701.06+680352.1, PSO J318.5338–22.8603 and VHS J125601.92–125723.9 b. Finally, we describe a future version of this survey, BASS-Ultracool, that will specifically target ≥ L5 candidate members of young moving groups. First experimentations in designing the survey have already led to the discovery of a new T dwarf bona fide member of AB Doradus, as well as the serendipitous discoveries of an L9 subdwarf and an L5 + T5 brown dwarf binary.


2016 ◽  
Vol 151 (2) ◽  
pp. 41 ◽  
Author(s):  
Christopher A. Theissen ◽  
Andrew A. West ◽  
Saurav Dhital

2018 ◽  
Vol 620 ◽  
pp. A171 ◽  
Author(s):  
R. Luque ◽  
G. Nowak ◽  
E. Pallé ◽  
D. Kossakowski ◽  
T. Trifonov ◽  
...  

We announce the discovery of two planetary companions orbiting around the low-mass stars Ross 1020 (GJ 3779, M4.0V) and LP 819-052 (GJ 1265, M4.5V). The discovery is based on the analysis of CARMENES radial velocity (RV) observations in the visual channel as part of its survey for exoplanets around M dwarfs. In the case of GJ 1265, CARMENES observations were complemented with publicly available Doppler measurements from HARPS. The datasets reveal two planetary companions, one for each star, that share very similar properties: minimum masses of 8.0 ± 0.5 M⊕ and 7.4 ± 0.5 M⊕ in low-eccentricity orbits with periods of 3.023 ± 0.001 d and 3.651 ± 0.001 d for GJ 3779 b and GJ 1265 b, respectively. The periodic signals around 3 d found in the RV data have no counterpart in any spectral activity indicator. Furthermore, we collected available photometric data for the two host stars, which confirm that the additional Doppler variations found at periods of approximately 95 d can be attributed to the rotation of the stars. The addition of these planets to a mass-period diagram of known planets around M dwarfs suggests a bimodal distribution with a lack of short-period low-mass planets in the range of 2–5 M⊕. It also indicates that super-Earths (>5 M⊕) currently detected by RV and transit techniques around M stars are usually found in systems dominated by a single planet.


2003 ◽  
Vol 211 ◽  
pp. 447-450 ◽  
Author(s):  
Scott J. Wolk

I review recent observations of brown dwarfs by the Chandra X-ray Observatory. These observations fall in 2 categories, young stellar clusters which contain brown dwarfs and brown dwarf candidates and directed pointings at brown dwarfs and very low mass stars. Surprisingly, there are already over 60 published detections of brown dwarfs by Chandra. A review of the X–ray characteristics shows these objects are subject to flaring and their temperatures and luminosities have a vast range which is related to age.


2020 ◽  
Vol 634 ◽  
pp. A128
Author(s):  
D. Nguyen-Thanh ◽  
N. Phan-Bao ◽  
S. J. Murphy ◽  
M. S. Bessell

Context. Studying the accretion process in very low-mass objects has important implications for understanding their formation mechanism. Many nearby late-M dwarfs that have previously been identified in the field are in fact young brown dwarf members of nearby young associations. Some of them are still accreting. They are therefore excellent targets for further studies of the accretion process in the very low-mass regime at different stages. Aims. We aim to search for accreting young brown dwarf candidates in a sample of 85 nearby late-M dwarfs. Methods. Using photometric data from DENIS, 2MASS, and WISE, we constructed the spectral energy distribution of the late- M dwarfs based on BT-Settl models to detect infrared excesses. We then searched for lithium and Hα emission in candidates that exhibit infrared excesses to confirm their youth and the presence of accretion. Results. Among the 85 late-M dwarfs, only DENIS-P J1538317−103850 (M5.5) shows strong infrared excesses in WISE bands. The detection of lithium absorption in the M5.5 dwarf and its Gaia trigonometric parallax indicate an age of ~1 Myr and a mass of 47 MJ. The Hα emission line in the brown dwarf shows significant variability that indicates sporadic accretion. This 1 Myr-old brown dwarf also exhibits intense accretion bursts with accretion rates of up to 10−7.9 M⊙ yr−1. Conclusions. Our detection of sporadic accretion in one of the youngest brown dwarfs might imply that sporadic accretion at early stages could play an important role in the formation of brown dwarfs. Very low-mass cores would not be able to accrete enough material to become stars, and thus they end up as brown dwarfs.


1970 ◽  
Vol 7 ◽  
pp. 5-25
Author(s):  
James Newcomb

The discovery and measurement of stellar proper motions has always been associated with machines: for proper motion measurements involve four activities: observation, recording, comparison and measurement. Participation by the astronomer in these activities has step by step been replaced partically or wholly by machines. First the observation and recording functions changed from visual to photographic – with the fine guiding done by the astronomer; then the comparison by the blink microscope and the measurement by visually operated measuring machines. On a comparative time scale, the next step – automation of the comparison and measurement function – has been much money, time, and effort away from the previous steps, but as this presentation and other presentations at this conference will show, machines of varying degrees of automation and astronomer participation are now in operation.


2019 ◽  
Vol 626 ◽  
pp. A99 ◽  
Author(s):  
Markus Janson ◽  
Ruben Asensio-Torres ◽  
Damien André ◽  
Mickaël Bonnefoy ◽  
Philippe Delorme ◽  
...  

Wide low-mass substellar companions are known to be very rare among low-mass stars, but appear to become increasingly common with increasing stellar mass. However, B-type stars, which are the most massive stars within ~150 pc of the Sun, have not yet been examined to the same extent as AFGKM-type stars in that regard. In order to address this issue, we launched the ongoing B-star Exoplanet Abundance Study (BEAST) to examine the frequency and properties of planets, brown dwarfs, and disks around B-type stars in the Scorpius-Centaurus (Sco-Cen) association; we also analyzed archival data of B-type stars in Sco-Cen. During this process, we identified a candidate substellar companion to the B9-type spectroscopic binary HIP 79098 AB, which we refer to as HIP 79098 (AB)b. The candidate had been previously reported in the literature, but was classified as a background contaminant on the basis of its peculiar colors. Here we demonstrate that the colors of HIP 79098 (AB)b are consistent with several recently discovered young and low-mass brown dwarfs, including other companions to stars in Sco-Cen. Furthermore, we show unambiguous common proper motion over a 15-yr baseline, robustly identifying HIP 79098 (AB)b as a bona fide substellar circumbinary companion at a 345 ± 6 AU projected separation to the B9-type stellar pair. With a model-dependent mass of 16–25 MJup yielding a mass ratio of <1%, HIP 79098 (AB)b joins a growing number of substellar companions with planet-like mass ratios around massive stars. Our observations underline the importance of common proper motion analysis in the identification of physical companionship, and imply that additional companions could potentially remain hidden in the archives of purely photometric surveys.


2003 ◽  
Vol 211 ◽  
pp. 119-122
Author(s):  
Frederick M. Walter ◽  
William H. Sherry ◽  
Scott J. Wolk

VRI images within the belt of Orion and the Ori OB1a association reveal a pre-main sequence locus extending to below our completeness limit of about V=21. We report here on followup JHK imaging and optical and near–IR spectroscopy of the faintest and reddest of the PMS candidates. We find that they are unreddened mid-to-late M “stars” which fall on a few million year isochrone. Masses are largely substellar, reaching as low as about 0.02 M⊙ (20 Jovian masses). The space density of the substellar objects is high.


2011 ◽  
Vol 731 (1) ◽  
pp. 17 ◽  
Author(s):  
A. C. Becker ◽  
J. J. Bochanski ◽  
S. L. Hawley ◽  
Ž. Ivezić ◽  
A. F. Kowalski ◽  
...  

2009 ◽  
Vol 5 (H15) ◽  
pp. 756-756 ◽  
Author(s):  
France Allard ◽  
Bernd Freytag

AbstractThe atmospheres of Brown Dwarfs (BDs) are the site of molecular opacities and cloud formation, and control their cooling rate, radius and brightness evolution. Brown dwarfs evolve from stellar-like properties (magnetic activity, spots, flares, mass loss) to planet-like properties (electron degeneracy of the interior, cloud formation, dynamical molecular transport) while retaining, due to their fully convective interior, larger rotational velocities (≤ 30 km/s i.e. P < 4 hrs versus 11 hrs for Jupiter). Model atmospheres treating all this complexity are therefore essential to understand the evolution properties, and to interpret the observations of these objects. While the pure gas-phase based NextGen model atmospheres (Allard et al. 1997, Hauschildt et al. 1999) have allowed the understanding of the several populations of Very Low Mass Stars (VLMs), the AMES-Dusty models (Allard et al. 2001) based on equilibrium chemistry have reproduced some near-IR photometric properties of M and L-type brown dwarfs, and played a key role in the determination of the mass of brown dwarfs and Planetary Mass Objects (PMOs) in the eld and in young stellar clusters. In this paper, we present a new model atmosphere grid for VLMs, BDs, PMOs named BT-Settl, which includes a cloud model and dynamical molecular transport based on mixing information from 2D Radiation Hydrodynamic (RHD) simulations (Freytag et al. 2009). We also present the status of our 3D RHD simulations including rotation (Coriolis forces) of a cube on the surface of a brown dwarf. The BT-Settl model atmosphere grid will be available shortly via the Phoenix web simulator (http://phoenix.ens-lyon.fr/simulator/).


Sign in / Sign up

Export Citation Format

Share Document