scholarly journals ICS as a Limiting Factor for Electron Energies in Pulsar Magnetospheres

2000 ◽  
Vol 177 ◽  
pp. 469-472
Author(s):  
Rodrigo Supper

AbstractBased on the polar cap model, we investigated in the energy loss of accelerated electrons in a neutron star magnetosphere by inverse Compton scattering of thermal photospheric radiation. An analytical treatment is presented, which turns out ranges in the magnetic field strength and thermal temperature where ultrarelativistic electrons can not survive.

1977 ◽  
Vol 43 ◽  
pp. 34-34
Author(s):  
W. Pietsch ◽  
C. Reppin ◽  
R. Staubert ◽  
J. Truemper ◽  
W. Voges ◽  
...  

A four hour balloon observation of HERC X-l during the 'On-state' in the 35 day cycle was performed on May 3rd, 1976. The 1.24 second pulsations show a pulsed fraction of 58 ± 8% in the 18-31 KeV interval. A pulsed flux (1.24 sec) was discovered in the 31-88 KeV interval with a pulsed fraction of 51 ± 14%. The spectrum of the pulsed flux can be represented up to 50 KeV by an exponential distribution with KT approximately 8 KeV. At approximately 58 KeV a strong and narrow line feature occurs which we interpret as electron cyclotron emission (ΔN = 1 Landau transition) from the polar cap plasma of the rotating neutron star. The corresponding magnetic field strength is approximately 5 x 1012 Gauss, neglecting gravitational red shift. There is evidence for a second harmonic at approximately 110 KeV (ΔN = 2 ).The astrophysical application of this discovery will be discussed in some detail.


2013 ◽  
Vol 9 (S304) ◽  
pp. 96-99
Author(s):  
Alla Miroshnichenko

AbstractWe examine properties of galaxies and quasars with steep low-frequency spectra from the UTR-2 catalogue. The number of the objects have the non-thermal X-ray emission due to the inverse Compton scattering of radio photons of the microwave background by relativistic electrons. So, it is possible to estimate the magnetic field strength and the ratio of energies of the magnetic field and relativistic particles, independently. As we have received the determined values of magnetic field strength are near to one order less than those at the well-known energy equipartition condition. We conclude from the obtained energy ratio that the energy of relativistic particles prevails over the energy of magnetic field in the galaxies and quasars with steep radio spectra.


1992 ◽  
Vol 128 ◽  
pp. 26-34
Author(s):  
Dipankar Bhattacharya

AbstractThe evolution of the magnetic field strength plays a major role in the life history of a neutron star. In this article the observational evidence of field evolution, in particular that of field decay and magnetic alignment, are critically examined. It is concluded that the observed decay of the spindown torque on radio pulsars cannot be caused by a secular evolution of the “obliqueness” of the neutron star, as suggested by some authors. Recent observations provide a strong indication that the decay of the magnetic field strength of a neutron star may be closely related to its evolution in a binary system. Theoretical models for such an evolution are discussed.


2019 ◽  
Vol 628 ◽  
pp. A83 ◽  
Author(s):  
F. Cova ◽  
F. Gastaldello ◽  
D. R. Wik ◽  
W. Boschin ◽  
A. Botteon ◽  
...  

Aims. We present the results of a joint XMM-Newton and NuSTAR observation (200 ks) of the galaxy cluster Abell 523 at z = 0.104. The peculiar morphology of the cluster radio halo and its outlier position in the radio power P(1.4 GHz) – X-ray luminosity plane make it an ideal candidate for the study of radio and X-ray correlations and for the search of inverse Compton (IC) emission. Methods. We constructed bi-dimensional maps for the main thermodynamic quantities (i.e., temperature, pressure and entropy) derived from the XMM observations to describe the physical and dynamical state of the cluster’s intracluster medium (ICM) in detail. We performed a point-to-point comparison in terms of surface brightness between the X-ray and radio emissions to quantify their morphological discrepancies. Making use of NuSTAR’s unprecedented hard X-ray focusing capability, we looked for IC emission both globally and locally after properly modeling the purely thermal component with a multi-temperature description. Results. The thermodynamic maps obtained from the XMM observation suggest the presence of a secondary merging process that could be responsible for the peculiar radio halo morphology. This hypothesis is supported by the comparison between the X-ray and radio surface brightnesses, which shows a broad intrinsic scatter and a series of outliers from the best-fit relation, corresponding to those regions that could be influenced by a secondary merger. The global NuSTAR spectrum can be explained by purely thermal gas emission, and there is no convincing evidence that an IC component is needed. The 3σ upper limit on the IC flux in the 20−80 keV band is in the [2.2−4.0] × 10−13 erg s−1 cm−2 range, implying a lower limit on the magnetic field strength in the B >  [0.23 − 0.31] μG range. Locally, we looked for IC emission in the central region of the cluster radio halo finding a 3σ upper limit on the 20−80 keV nonthermal flux of 3.17 × 10−14 erg s−1 cm−2, corresponding to a lower limit on the magnetic field strength of B ≳ 0.81 μG.


2019 ◽  
Vol 490 (3) ◽  
pp. 3355-3364
Author(s):  
Andrey N Semena ◽  
Alexander A Lutovinov ◽  
Ilya A Mereminskiy ◽  
Sergey S Tsygankov ◽  
Andrey E Shtykovsky ◽  
...  

ABSTRACT We report results of the spectral and timing analysis of the Be/X-ray pulsar SXP 4.78 using the data obtained during its recent outburst with NuSTAR, Swift, Chandra, and NICER observatories. Using an overall evolution of the system luminosity, spectral analysis, and variability power spectrum we obtain constraints on the neutron star magnetic field strength. We found a rapid evolution of the variability power spectrum during the rise of the outburst, and absence of the significant changes during the flux decay. Several low frequency quasi-periodic oscillation features are found to emerge on the different stages of the outburst, but no clear clues on their origin were found in the energy spectrum and overall flux behaviour. We use several indirect methods to estimate the magnetic field strength on the neutron star surface and found that most of them suggest magnetic field B ≲ 2 × 1012 G. The strictest upper limit comes from the absence of the cyclotron absorption features in the energy spectra and suggests relatively weak magnetic field B < 6 × 1011 G.)


1981 ◽  
Vol 95 ◽  
pp. 263-264
Author(s):  
J. Ventura

The spectrum of Hercules X-1 reveals line features at 58 keV and probably at 110 keV, which have been interpreted as first and second cyclotron harmonics originating in the radiation from the hot polar cap region of a magnetic neutron star. The inferred magnetic field strength is ~ 5.3 × 1012 Gauss (Trümper et al. 1978). Other noteworthy spectral characteristics of this source are the very ‘flat’ intensity continuum in the frequency range 2 – 20 keV followed by a rather sharp spectral break near 25 keV and an intensity minimum near 40 keV. This spectrum is certainly not reminiscent of typical black-body emission. How can one understand these diverse characteristics?


2006 ◽  
Vol 2 (S238) ◽  
pp. 443-444
Author(s):  
D. A. Schwartz ◽  
D. E. Harris ◽  
H. Landt ◽  
A. Siemiginowska ◽  
E. S. Perlman ◽  
...  

AbstractWe investigate the variations of the magnetic field, Doppler factor, and relativistic particle density along the jet of a quasar at z=0.72. We chose 4C 19.44 for this study because of its length and straight morphology. The 18 arcsec length of the jet provides many independent resolution elements in the Chandra X-ray image. The straightness suggests that geometry factors, although uncertain, are almost constant along the jet. We assume the X-ray emission is from inverse Compton scattering of the cosmic microwave background. With the aid of assumptions about jet alignment, equipartition between magnetic-field and relativistic-particle energy, and filling factors, we find that the jet is in bulk relativistic motion with a Doppler factor ≈ 6 at an angle no more than 10∘ to the line of sight over de-projected distances ≈ 150–600 kpc from the quasar, and with a magnetic field ≈10 μGauss.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


2021 ◽  
Vol 11 (10) ◽  
pp. 4683
Author(s):  
Areum Lee ◽  
Chinnasamy Veerakumar ◽  
Honghyun Cho

This paper discusses the forced convective heat transfer characteristics of water–ethylene glycol (EG)-based Fe3O4 nanofluid and Fe3O4–MWCNT hybrid nanofluid under the effect of a magnetic field. The results indicated that the convective heat transfer coefficient of magnetic nanofluids increased with an increase in the strength of the magnetic field. When the magnetic field strength was varied from 0 to 750 G, the maximum convective heat transfer coefficients were observed for the 0.2 wt% Fe3O4 and 0.1 wt% Fe3O4–MWNCT nanofluids, and the improvements were approximately 2.78% and 3.23%, respectively. The average pressure drops for 0.2 wt% Fe3O4 and 0.2 wt% Fe3O4–MWNCT nanofluids increased by about 4.73% and 5.23%, respectively. Owing to the extensive aggregation of nanoparticles by the external magnetic field, the heat transfer coefficient of the 0.1 wt% Fe3O4–MWNCT hybrid nanofluid was 5% higher than that of the 0.2 wt% Fe3O4 nanofluid. Therefore, the convective heat transfer can be enhanced by the dispersion stability of the nanoparticles and optimization of the magnetic field strength.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850083 ◽  
Author(s):  
Ritam Mallick ◽  
Amit Singh

In this paper, we present the effect of a strong magnetic field in the burning of a neutron star (NS). We have used relativistic magneto-hydrostatic (MHS) conservation equations for studying the PT from nuclear matter (NM) to quark matter (QM). We found that the shock-induced phase transition (PT) is likely if the density of the star core is more than three times nuclear saturation ([Formula: see text]) density. The conversion process from NS to quark star (QS) is found to be an exothermic process beyond such densities. The burning process at the star center most likely starts as a deflagration process. However, there can be a small window at lower densities where the process can be a detonation one. At small enough infalling matter velocities the resultant magnetic field of the QS is lower than that of the NS. However, for a higher value of infalling matter velocities, the magnetic field of QM becomes larger. Therefore, depending on the initial density fluctuation and on whether the PT is a violent one or not the QS could be more magnetic or less magnetic. The PT also have a considerable effect on the tilt of the magnetic axis of the star. For smaller velocities and densities the magnetic angle are not affected much but for higher infalling velocities tilt of the magnetic axis changes suddenly. The magnetic field strength and the change in the tilt axis can have a significant effect on the observational aspect of the magnetars.


Sign in / Sign up

Export Citation Format

Share Document