scholarly journals Consistent Relativistic VLBI Theory with Picosecond Accuracy

1991 ◽  
Vol 127 ◽  
pp. 351-358
Author(s):  
M. Soffel ◽  
J. Müller ◽  
X. Wu ◽  
C. Xu

The accuracy of Very Long Baseline Interferometry (VLBI), representing one of the most important space techniques of modern geodesy, especially for the determination of the Earth’s rotation parameters and baselines, is steadily increasing. Presently, delay residuals are of the order of 30 - 50 ps, corresponding to an uncertainty in length of about 1 centimeter e.g. in the determination of baselines or the position of the rotation pole. As has already been stressed by many authors, at this level of accuracy a relativistic formulation of the VLBI measuring process is indispensable (e.g. the gravitational time delay for rays getting close to the limb of the Sun amounts to 170 ns!). Starting with the work by Finkelstein et al. (1983) a series of papers has meanwhile been published on a relativistic VLBI theory (Soffelet al., 1986; Hellings, 1986; Zeller et al., 1986; Herring, 1989). However, possibly apart from Brumberg’s treatment in his new monograph (Brumberg, 1990) all of these theories have one fatal drawback: they are not based upon some consistent theory of reference frames, which relates the global, barycentric coordinates, in which the measuring process is primarily formulated and in which positions and velocities of the bodies of the solar system are computed, with the local, geocentric coordinates, comoving with the Earth, in which the geodetically meaningful baselines are defined. Furthermore, none of these theories (including Brumberg’s (1990) treatment) have the accuracy of one picosec which seems desirable with respect to the achieved residual values.

1988 ◽  
Vol 129 ◽  
pp. 371-375
Author(s):  
T. A. Herring

The application of very–long–baseline interferometry (VLBI) to the study of the nutations of the earth has yielded unprecedented accuracy for the experimental determination of the coefficients of the nutation series. The analysis of six years of VLBI data has yielded corrections to the coefficients of the seven largest terms in the IAU 1980 nutation series with periods of one year or less, with accuracies approaching the truncation error of this nutation series (0.1 mas). The nutation series coefficients computed from the VLBI data, and those obtained from theoretical considerations (the IAU 1980 nutation series), are in excellent agreement. The largest corrections are to the coefficients of the retrograde annual nutation [2.0 ± 0.1 mas], the prograde semiannual nutation [(0.5 - ι 0.4) ±0.1 mas], and the prograde 13.7 day nutation [−0.4 ± 0.1 mas]. (The imaginary term for the semiannual nutation represents a term 90° out–of–phase with the arguments of the nutation series.) The geophysical implications of these results are currently under active investigation. We discuss the methods used to extract the nutation information from the VLBI data, the calculations of the uncertainties of the resultant corrections to the coefficients of the nutation series, and the current research into the nutations of the earth.


1997 ◽  
Vol 165 ◽  
pp. 319-324
Author(s):  
J. Souchay

AbstractThe necessity to elaborate a theory of nutation and precession matching the accuracy of very modern techniques as Very Long Baseline Interferometry and Lunar Laser Ranging led recently to various works. We discuss here the good agreement between those related to the nutation when considering the Earth as a solid body. In comparison we show the uncertainty concerning the modelisation of the transfer function leading to theoretical determination of the nutation coefficients when including dominant geophysical characteristics.


1989 ◽  
Vol 110 ◽  
pp. 102-105 ◽  
Author(s):  
Chris Benn

Astronomers have always had a special need for rapid communication over large distances, partly because of their interest in experiments requiring long baselines. Examples: Eratosthenes’ measurement of the circumference of the Earth; determination of longitude at sea; solar-eclipse tests of general relativity; very-long-baseline interferometry. Of these, at least the second has prompted innovations in communications techniques (beginning with the Greenwich time ball).More recently, the pressing need to travel widely for clean air and aether, and the international flavour of the resulting collaborations, has given astronomers particular incentive to explore the latest communications innovation: electronic mail.


1979 ◽  
Vol 82 ◽  
pp. 225-230
Author(s):  
H. G. Walter

Considerable improvement in the determination of the motion of the Earth is possible by the potentially high accuracy inherent in very-long-baseline interferometry. Precisions of UT1 are estimated from time delay and fringe frequency measurements of extragalactic radio sources with positional uncertainties at the level. Case studies resulted in standard deviations about one order of magnitude smaller than those obtained by classical astrometric methods. The dependence of estimates on baseline orientations and source declinations is discussed.


2009 ◽  
Vol 5 (H15) ◽  
pp. 207-208
Author(s):  
D. Gambis ◽  
C. Bizouard

AbstractMonitoring the Earth rotation is essential in various domains linked to reference frames firstly with applications in orbit determination, space geodesy or Astronomy. Secondly for geophysical studies where are involved mass motions within the different external fluid layers, atmosphere, hydrosphere, core and mantle of the earth, this on time scales ranging from a few hours to decades. The Earth Orientation Centre of the IERS is continuously monitoring the earth orientation variations from results derived from the various astro-geodetic techniques. It has in particular the task of deriving an optimal combined series of UT1 which is now based mainly on Very Long Baseline Interferometry (VLBI) with some contribution of LOD derived from GPS. We give here a brief summary concerning the contribution of the various techniques to UT1 and in aprticular how the use of LOD derived from GPS can improve the combination. More details are available in Gambis (2004) and Bizouard and Gambis (2009) and the website http://hpiers.obspm.fr/eop-pc/


1993 ◽  
Vol 156 ◽  
pp. 133-144
Author(s):  
W. E. Carter ◽  
D. S. Robertson

Very-long-baseline Interferometry (VLBI) has opened for study a broad new spectrum of geophysical phenomena including: direct observation of the tectonic motions and deformations of the Earth's crustal plates, observations of unprecedented detail of the variations in the rotation of the Earth, and direct measurement of the elastic deformations of the Earth in response to tidal forces. These new measurements have placed significant constraints on models of the interior structure of the Earth; for example, measurements of the variations in the Earth's nutation have been shown to be particularly sensitive to the shape of the core-mantle boundary. The VLBI measurements will allow us to construct a global reference frame accurate at the centimeter level. Such a frame will be essential to studying long-term global changes, especially those changes related to sea-level variations as recorded by tide gauge measurements.


2016 ◽  
Vol 90 (12) ◽  
pp. 1329-1329 ◽  
Author(s):  
Benedikt Soja ◽  
Tobias Nilsson ◽  
Kyriakos Balidakis ◽  
Susanne Glaser ◽  
Robert Heinkelmann ◽  
...  

1996 ◽  
Vol 112 ◽  
pp. 1294 ◽  
Author(s):  
W. M. Folkner ◽  
T. P. McElrath ◽  
A. J. Mannucci

2008 ◽  
Vol 4 (T27A) ◽  
pp. 5-11
Author(s):  
Toshio Fukushima ◽  
George H. Kaplan ◽  
George A. Krasinsky ◽  
Jean Eudes Arlot ◽  
John A. Bangert ◽  
...  

JPL planetary ephemeris development has been very active assimilating measurements from current planetary missions and supporting future missions. The NASA Mars Science Laboratory (MSL) mission with launch in 2009 requires knowledge of the Earth and Mars ephemerides with 30m accuracy. By comparison, the accuracy of the Mars ephemeris in the widely used DE405 ephemeris was about 3 km. Meeting the MSL needs requires an ongoing program of range and very-long baseline interferometry measurements of Mars orbiting spacecraft. The JPL ephemeris DE421 was released three months before the landing of the Phoenix mission on Mars, and has met the 300m requirement. Continued measurements are planned to support the MSL landing.


2013 ◽  
Vol 67 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Cao Fen ◽  
Yang XuHai ◽  
Su MuDan ◽  
Li ZhiGang ◽  
Feng ChuGang ◽  
...  

In order to more restrict the transverse orbit error, a new method named “differenced ranges between slave stations by transfer”, similar to Very Long Baseline Interferometry (VLBI) observation, has been developed in the Chinese Area Positioning System (CAPS). This method has the number of baselines added, the baseline length increased and the data volume enlarged. In this article, the principle of “differenced ranges between slave stations by transfer” has been described in detail, with the clock offset between slave stations and system error which affects the precision of the differenced ranges observation being discussed. Using this method, the differenced observation of the SINOSAT-1 satellite with C-band between slave stations from 6 to 13 June 2005 was conducted. Then a comparison was made between the accuracy of orbit determination and orbit prediction. A conclusion can be drawn that the combination of pseudo-range receiving the own-station-disseminated signal and the differenced range observation between slave-slave stations has a higher orbit determination and prediction accuracy than using only the former.


Sign in / Sign up

Export Citation Format

Share Document