UBV Photometry of RR Lyrae Variables in the Globular Cluster M4

1979 ◽  
Vol 46 ◽  
pp. 347-354 ◽  
Author(s):  
Carla Cacciari

M4, one of the closest globular clusters to the Sun, presents some peculiar features that make it very interesting to study. The first C-M diagram, published by Greenstein (1939), showed a well populated blue-horizontal branch, a characteristic which usually, but not always, indicates low metal abundance (Hartwick 1968). Kinman (1959) found however that it contains strong lined red giants and classified it as type A, indicating normal metal abundance. More recent C-M diagrams (Moshkalev 1975, Alcaino 1975, Lee 1977, Lloyd Evans 1977) substantially confirmed both these characteristics.One of the major problems in the study of this cluster is the high and possibly non-uni form reddening, due to its location behind the Scorpius-Ophiuchus dark clouds.

1973 ◽  
Vol 21 ◽  
pp. 113-119 ◽  
Author(s):  
M. V. Norris

NGC 1466 (α1950 = 3h44.m6, δ1950= -71°45’) is a globular cluster which appears to be situated between the two Magellanic Clouds. Previous estimates (Gascoigne, 1966) put it at roughly the same distance from us as the LMC, so it is regarded as a member of the Cloud system. It is globular in appearance, and its colour-magnitude diagram confirms this classification. It has a fairly well-developed horizontal branch, and was found by Wesselink (1970) to be quite rich in variables. The metallicity index, Q, (van den Bergh, 1967) has a value of -0.36 for NGC 1466 (Andrews and Lloyd Evans, 1971). This would rank it with M5 and NGC 6171 as a cluster of intermediate metal content. This comparison is consistent with the value of Δ V for the cluster, which, at 2.m6, is representative of the Δ V values of globular clusters of intermediate metal abundance in the Galaxy.


2019 ◽  
Vol 490 (1) ◽  
pp. 741-751 ◽  
Author(s):  
Jeffrey D Simpson ◽  
Sarah L Martell

ABSTRACT We report the discovery of the only very nitrogen-enhanced metal-poor star known in a Galactic globular cluster. This star, in the very metal-poor cluster ESO280−SC06 , has $[\textrm{N}/\textrm{Fe}]\, \gt +2.5$, while the other stars in the cluster show no obvious enhancement in nitrogen. Around 80 NEMP stars are known in the field, and their abundance patterns are believed to reflect mass transfer from a binary companion in the asymptotic giant branch phase. The dense environment of globular clusters is detrimental to the long term survival of binary systems, resulting in a low observed binary fraction among red giants and the near absence of NEMP stars. We also identify the first known horizontal branch members of ESO280−SC06 , which allow for a much better constraint on its distance. We calculate an updated orbit for the cluster based on our revised distance of 20.6 ± 0.5 kpc, and find no significant change to its orbital properties.


1980 ◽  
Vol 5 ◽  
pp. 817-826
Author(s):  
B. E. J. Pagel

SummaryThis review concerns recent work on the determination of overall metallicities [Fe/H] in a number of globular clusters and the systematics of mixing effects displayed (usually) by weak CH and strong CN. Special attention is given to the globular cluster ω Centauri, where both metal abundance variations and mixing effects occur and are closely intertwined. Recent observations carried out at the Anglo-Australian Telescope by E.A. Mallia and D.C. Watts have revealed large variations in the strength of metallic lines across the red giant branch of this cluster.


1989 ◽  
Vol 111 ◽  
pp. 141-167
Author(s):  
R.J. Dickens

AbstractThe significance of some of the unusual characteristics of the globular cluster ω Centauri in various fundamental problems is explored. Interest is centred on the properties of the cluster RR Lyraes, and what they can contribute to studies of early cluster chemical enrichment, stellar pulsation, the distance scale, stellar evolution, stellar ages and the Oosterhoff period-shift problem. This article, which is intended to highlight problems and progress rather than give a comprehensive review, includes new results based on photometry of the RR Lyraes, red giants, subgiants, horizontal-branch and main sequence stars in the cluster.


1988 ◽  
Vol 126 ◽  
pp. 505-506
Author(s):  
Young-Wook Lee ◽  
Pierre Demarque ◽  
Robert Zinn

New synthetic horizontal branch (HB) models are presented for some globular clusters known to have bimodal HB distributions. These models are based on new Yale HB evolutionary tracks for Y=0.25 and the core masses appropriate for the compositions. The distribution of stellar masses along the HB is given by a slightly modified version of Rood's (1973) function. Figure 1 compares the synthetic and the observed color-magnitude diagrams and the generalized histograms of the distribution of HB stars over (B-V)o (observational data from Alcaino & Liller 1984, Buonanno et al. 1981, Stetson 1981, and Menzies 1974 for clusters M4, M5, N1851, and N6723 respectively). Following Norris (1981), we have used the period-luminosity-color relations to estimate the colors of some RR Lyrae variables. Since none of the parameters in the models has a bimodal distribution, the excellent agreement between the color distributions of the models and the observations suggests that the observed bimodal distributions are a consequence of the evolution from the zero-age HB. Contrary to the suggestion of Norris (1981) and Smith & Norris (1983), there is no need to connect the bimodality of the HB with the observed bimodal CN distributions of the red giants in some of these clusters. The clusters in Figure 1 span a narrow range in metallicity ([Fe/H]=-1.40 to −1.09; Zinn 1985), and we are investigating other, less well observed, clusters in this range (e.g., N2808) to see if their bimodal HB distributions also have simple explanations.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1973 ◽  
Vol 21 ◽  
pp. 196-196
Author(s):  
T. S. Van Albada ◽  
Norman Baker

AbstractThe observational evidence leading to the classification, following Oosterhoff, of globular clusters containing RR Lyrae stars into two distinct groups, is summarized and discussed in the light of results of stellar evolution theory and pulsation theory. The dichotomy is caused, at least in part, by a dichotomy in the ‘transition period’ between the type-ab and type-c stars which reflects a difference in effective temperature at the transition point. When this difference is accounted for, there remains a smaller average difference between the groups, though no longer a clear dichotomy, that is probably a mass and luminosity effect. If this remaining difference is interpreted as a luminosity effect the average difference in luminosity between the two Oosterhoff groups is at most 0.1 mag. It is suggested that Christy’s theoretical relationship between transition period and luminosity cannot be valid, at least not for clusters of different Oosterhoff groups. It is conjectured that the transition-temperature dichotomy may be a reflection of different predominant directions of evolution along the horizontal branch, accompanied by a hysteresis effect in the pulsations.


1973 ◽  
Vol 21 ◽  
pp. 197-206
Author(s):  
V. Castellani ◽  
P. Giannone ◽  
A. Renzini

AbstractThe differences in observational parameters of the RR Lyrae variables and horizontal branch stars of globular clusters and other population II systems are considered. A discontinuous behaviour of some parameters is outlined. The Oosterhoff dichotomy and the HB morphology are discussed with regard to a conjecture of mass loss in the pre-HB phase.


1989 ◽  
Vol 111 ◽  
pp. 285-285
Author(s):  
H.A. Smith ◽  
J.R. Kuhn ◽  
J. Curtis

AbstractBVR observations of the relatively metal-rich globular cluster NGC 6388 have been obtained with a CCD on the CTIO 0.9 m telescope. Eighteen possible short period variable stars have been discovered in or near the cluster. At least 10 of these are probable RR Lyrae members of NGC 6388. We confirm the finding of Hazen and Hesser that this cluster is one of the most metal-rich to contain a significant number of RR Lyraes. A program of CCD photometry of field and cluster variable stars has been initiated on the 0.6m telescope of the Michigan State University Observatory.


1993 ◽  
Vol 139 ◽  
pp. 337-337
Author(s):  
Martha L. Hazen

A search for variable stars in the globular cluster NGC 6544 has revealed only one possible short period variable within the tidal radius of the cluster. A search in NGC 6642 yielded 16 new RR Lyrae stars within the tidal radius and 5 new field RRs. The previously discovered (Hoffleit 1972) V1 is a slow variable, and V2 is an RR Lyrae star. Photometry of the variables within the tidal radius gives a mean B for the horizontal branch of < B > = 17.0 mag. With E(B – V) = 0.37 mag and (B – V) = 0.35 mag for RR Lyraes, a value for V(HB) = 16.3 mag is derived. This is about one mag fainter than previous estimates (Webbink 1985), and places NGC 6642 at a distance of approximately 7.9 kpc.


Sign in / Sign up

Export Citation Format

Share Document