High-Energy Radiation From Active Galactic Nuclei

1994 ◽  
Vol 142 ◽  
pp. 923-928
Author(s):  
Marek Sikora

AbstractTwo recent findings concerning high-energy radiation properties of active galactic nuclei—discovery of breaks in hard X-ray spectra of Seyfert galaxies, and discovery of huge fluxes of hard gamma rays from blazars—seem to press us to change our standard views about radiation production in these objects. I review briefly the existing radiation models, confront them with the newest observations, and discuss newly emerging theoretical pictures which attempt to account for the discoveries.Subject headings: galaxies: active — galaxies: nuclei — radiation mechanisms: nonthermal

1983 ◽  
Vol 104 ◽  
pp. 345-346
Author(s):  
M. Kafatos ◽  
Jean A. Eilek

The origin of the high energy (X-ray and gamma-ray) background may be attributed to discrete sources, which are usually thought to be active galactic nuclei (AGN) (cf. Rothschild et al. 1982, Bignami et al. 1979). At X-rays a lot of information has been obtained with HEAO-1 in the spectral range 2–165 keV. At gamma-rays the background has been estimated from the Apollo 15 and 16 (Trombka et al. 1977) and SAS-2 (Bignami et al. 1979) observations. A summary of some of the observations (Rothschild et al. 1982) is shown in Figure 1. The contribution of AGN to the diffuse high energy background is uncertain at X-rays although it is generally estimated to be in the 20–30% range (Rothschild et al. 1982). At gamma-rays, in the range 1–150 MeV, AGN (specifically Seyfert galaxies) could account for all the emission.


1993 ◽  
Vol 418 ◽  
pp. 832 ◽  
Author(s):  
D. E. Alexandreas ◽  
G. E. Allen ◽  
D. Berley ◽  
S. Biller ◽  
R. L. Burman ◽  
...  

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


1988 ◽  
Vol 20 (1) ◽  
pp. 671-675
Author(s):  
C.J. Cesarsky ◽  
R.A. Sunyaev ◽  
G.W. Clark ◽  
R. Giacconi ◽  
Vin-Yue Qu ◽  
...  

The european X-ray observatory (EXOSAT), which was launched in 1983 and which finished operations in April 1986, has brought a rich harvest of results in the period 1984-1987, surveyed here. The EXOSAT payload consisted of three sets of instruments: two low energy imaging telescopes (LE:E<2 KeV), a medium-energy experiment (ME:E=l-50KeV) and a gas scintillation proportional counter (GSPC:E=2-20KeV). Over most of the energy range covered, EXOSAT was not more sensitive than its predecessor, the american EINSTEIN satellite. But the EINSTEIN satellite is far from having exhausted the treasures of the X-ray sky. And EXOSAT, thanks to its elliptical 90-hour orbit, had the extra advantage of being able to make long, continuous observations of interesting objects, lasting up to 72 hours. Thus, EXOSAT was very well suited for variability studies, and many of its most important findings are in this area. EXOSAT observations sample a vide range of astrophysical sources: X-ray binaries, cataclysmic variables and active stars; supernova remnants and the interstellar medium; active galactic nuclei, and clusters of galaxies. Among the highlights, let us mention:


1989 ◽  
Vol 134 ◽  
pp. 199-200
Author(s):  
R. J. V. Brissenden ◽  
I. R. Tuohy ◽  
G. V. Bicknell ◽  
R. A. Remillard ◽  
D. A. Schwartz

A sample of Active Galactic Nuclei (AGN) have been discovered during a program to identify the optical counterparts of X-ray sources detected by the Modulation Collimator experiment of the High Energy Astronomy Observatory-1 (HEAO-1). UV-excess techniques were used to identify the X-ray sources (Remillard et al. 1986) and the details of the identifications are given elsewhere (Remillard et al. 1988, Brissenden et al. 1988). We report here the preliminary results of a multi-wavelength study of these new AGN.


2020 ◽  
Author(s):  
Michele Urbani ◽  
Joan Montanyà ◽  
Oscar Van der Velde ◽  
Jesús Alberto López

&lt;p&gt;In the last two decades, it has been discovered that lightning strikes can emit high-energy radiation.&lt;br&gt;In particular, a phenomenon has been observed from space called &quot;Terrestrial Gamma-ray Flash'' (TGF), which consists of an intense burst of gamma radiation that can be produced during thunderstorms. This phenomenon has met with considerable interest in the scientific community and its mechanism is still not fully understood. Nowadays several satellites for astrophysics like AGILE and FERMI are able to detect and map TGFs and specific instruments like the ASIM detector on the ISS are studying this phenomenon from space.&lt;br&gt;In the atmosphere, the high-energy radiation undergoes a strong absorption exponentially proportional to the air density which makes it more difficult to detect TGFs on the ground. Nonetheless, ground measurements were conducted and observed that even in cloud-to-ground lightning high-energy radiation were produced. In particular, the works of Moore et al. [2001] and Dwyer et al. [2005] highlight two lightning processes in which the X-ray emission could be produced: downward negative stepped leader and dart leader. Currently, it is not clear if the emissions revealed on the ground and the TGFs observed in space are essentially the same phenomenon or how these phenomena are related. For these reasons, it is particularly interesting to study high-energy emissions also from ground instruments because, despite the strong absorption of the high-energy radiation, ground observations can reach a better accuracy in time and space and provide crucial information to investigate the origin and conditions under which these emissions occur.&lt;br&gt;A privileged instrument for this research is the VHF Lightning Interferometer, a system of antennas that allows you to map lightning through the very high frequency (VHF) emission. Due to the high resolution of this instrument, should be possible to locate the origin of the high-energy emissions and hopefully provide a better understanding of the radiation mechanism.&lt;br&gt;The aim of this research is, therefore, to develop a 3D interferometry system to identify as accurately as possible the origin and the conditions in which the X-ray emission occurs in cloud-to-ground lightning and investigate the relation of the VHF emissions with the TGFs.&lt;br&gt;Recently an observation campaign was conducted in Colombia with two VHF Lightning Interferometers and two X-rays detectors. This interferometry system was installed in the coverage area of a Lightning Mapping Array (LMA) and LINET to take advantage of the complementary information that these lightning location networks could provide. At the moment, about 15 lightning events with X-ray emissions were observed, including five X-ray bursts from downward negative leaders and two emissions from dart leaders. Further studies and analysis of the collected data are still ongoing.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document