scholarly journals Orbital Solutions for WZ Sagittae During Quiescence

1983 ◽  
Vol 72 ◽  
pp. 29-34
Author(s):  
Ronald L. Gilliland

WZ Sagittae was one of the first cataclysmic variables shown to be a binary system (Kraft 1961) from spectroscopic observations. Krzeminski (1962) found that WZ Sge was an eclipsing binary with an 81 min 38 s orbital period. Krzeminski and Kraft (1964, hereafter KK) in the first of many comprehensive analyses of the WZ Sge system to appear in the literature stated “a lower limit to certain detection of orbital velocity changes for the double emission feature is 2K = 75 km s-1 .” Interpreted as an upper limit to K^ of 37.5 km s-1 this fundamental result has remained untested for two decades, although interpretations and observations of WZ Sge have led to a vast literature. Despite the lack of a well determined orbital velocity, WZ Sge is one of the most thoroughly studied cataclysmic variables. The photometric properties during quiescence have been thoroughly studied and discussed (Robinson, et al. 1978; Fabian, et al. 1978; Ritter and Schroder 1979), although a consensus on model parameters has remained elusive.

1983 ◽  
Vol 72 ◽  
pp. 263-267
Author(s):  
Shigeki Miyaji

Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both x-ray close binaries (4U1626-67; Middleditch et al. 1981 and 4U1916 -0.5; White and Swank 1982) and cataclysmic variables (AM CVn; Faulkner et al. 1972 and G61-29; Nather et al. 1981). Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of them belongs to any globular cluster, are too abundant to be explained by capturing mechanism of a white dwarf. Therefore it seemed to be worth to present an evolutionary scenario from an original binary system which can be applied for all of VSOP binaries.


1987 ◽  
Vol 93 ◽  
pp. 205-205 ◽  
Author(s):  
F. Verbunt

AbstractThe preliminary results of the analysis of more than 1000 spectra of cataclysmic variables in the archive of the International Ultraviolet Explorer were presented at the meeting. To characterize the slope of the spectra I use F = log(f1460Å/f2880Å). For most spectra F lies between 0.2 and 0.7. No correlation of F with orbital period, inclination, system type or (for dwarf novae) length of the interoutburst interval are found, apart from somewhat lower values of F for DQ Her type systems. Out of 16 dwarf novae for which spectra both at outburst maximum and minimum are available 11 show no large difference in F between maximum and minimum, and in 5 F declines with the flux level. Out of 6 dwarf novae 5 show very red spectra during the rise to maximum, and 1 shows slopes during rise similar to those during decline.In the ultraviolet resonance lines, due to a wind from the disc, no correlation is found between inclination and terminal velocity.


2022 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Jordan Simpson ◽  
David Jones ◽  
Roger Wesson ◽  
Jorge García-Rojas

Abstract A30 belongs to a class of planetary nebulae identified as “born-again”, containing dense, hydrogen-poor ejecta with extreme abundance discrepancy factors (ADFs), likely associated with a central binary system. We present intermediate-dispersion spectroscopy of one such feature—the J4 equatorial knot. We confirm the apparent physical and chemical segregation of the polar and equatorial knots observed in previous studies, and place an upper limit on the ADF for O2+ of 35, significantly lower than that of the polar knots. These findings further reinforce the theory that the equatorial and polar knots originate from different events.


2015 ◽  
Vol 2 (1) ◽  
pp. 41-45
Author(s):  
S. Zharikov ◽  
G. Tovmassian

We discussed features of Cataclysmic Variables at the period minimum. In general, most of them must be WZ Sge-type objects. Main characteristics of the prototype star (WZ Sge) are discussed. A part of WZ Sge-type objects has evolved past the period limit and formed the bounce back systems. We also explore conditions and structure of accretion disks in such systems. We show that the accretion disk in a system with extreme mass ratio grows in size reaching a 2:1 resonance radius and are relatively cool. They also become largely optically thin in the continuum, contributing to the total flux less than the stellar components of the system. In contrast, the viscosity and the temperature in spiral arms formed at the outer edge of the disk are higher and their contribution in continuum plays an increasingly important role. We model such disks and generate light curves which successfully simulate the observed double-humped light curves in the quiescence.


2005 ◽  
Vol 635 (2) ◽  
pp. 1263-1280 ◽  
Author(s):  
Bart Willems ◽  
Ulrich Kolb ◽  
Eric L. Sandquist ◽  
Ronald E. Taam ◽  
Guillaume Dubus

2004 ◽  
Vol 17 (4) ◽  
pp. 435-441
Author(s):  
J. Lucinda ◽  
D. W. Foryta ◽  
M. G. Rodbard
Keyword(s):  

2004 ◽  
Vol 190 ◽  
pp. 15-21 ◽  
Author(s):  
Gaghik Tovmassian ◽  
Sergey Zharikov ◽  
Ronald Mennickent ◽  
Jochen Greiner

AbstractWe have observed several magnetic cataclysmic variables located in the range between 2 and 3 hours, known as the period gap. This work was prompted by the recent discovery of RXJ1554.2+2721. It has 2.54 hours orbital period and shows almost pure cyclotron continuum in a low luminosity state, similar to HS1023+3900, HS0922+1333 and RBS206. These are low accretion rate polars (LARPs) known to have mass transfer rates of order of a few 10-13M⊙/year. The aim of the study was to find out, if magnetic systems filling the period gap are in any way different from their counterparts outside that range of periods. The only significant difference we encounter is a much higher number of asynchronous magnetic systems towards longer periods than below the gap.


Author(s):  
R O Brown ◽  
M J Coe ◽  
W C G Ho ◽  
A T Okazaki

Abstract As the largest population of high mass X-ray binaries, Be/X-ray binaries provide an excellent laboratory to investigate the extreme physics of neutron stars. It is generally accepted that Be stars possess a circumstellar disc, providing an additional source of accretion to the stellar winds present around young hot stars. Interaction between the neutron star and the disc is often the dominant accretion mechanism. A large amount of work has gone into modelling the properties of these circumstellar discs, allowing for the explanation of a number of observable phenomena. In this paper, smoothed particle hydroynamics simulations are performed whilst varying the model parameters (orbital period, eccentricity, the mass ejection rate of the Be star and the viscosity and orientation of the disc). The relationships between the model parameters and the disc’s characteristics (base gas density, the accretion rate of the neutron star and the disc’s size) are presented. The observational evidence for a dependency of the size of the Be star’s circumstellar disc on the orbital period (and semi-major axis) is supported by the simulations.


2017 ◽  
Vol 468 (3) ◽  
pp. 3109-3122 ◽  
Author(s):  
J. van Roestel ◽  
P. J. Groot ◽  
D. Levitan ◽  
T. A. Prince ◽  
S. Bloemen ◽  
...  

1987 ◽  
Vol 93 ◽  
pp. 47-51
Author(s):  
E.M. Sion

AbstractWith the recent detection of direct white dwarf photospheric radiation from certain cataclysmic variables in quiescent (low accretion) states, important implications and clues about the nature and long-term evolution of cataclysmic variables can emerge from an analysis of their physical properties. Detection of the underlying white dwarfs has led to a preliminary empirical CV white dwarf temperature distribution function and, in a few cases, the first detailed look at a freshly accreted while dwarf photosphere. The effective temperatures of CV white dwarfs plotted versus orbital period for each type of CV appears to reveal a tendency for the cooler white dwarf primaries to reside in the shorter period systems. Possible implications are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document