scholarly journals Nonlinear Oscillation of the Magnetosphere around Neutron Stars

1988 ◽  
Vol 108 ◽  
pp. 242-243
Author(s):  
Hitoshi Hanami

SummaryWe investigate the unsteady motion of mass reservoir formed by the accretion onto the magnetosphere around rotating neutron stars. The unsteady motion of the reservoir induces secondary accretion to neutron star by R-T instability. The nonperiodic or quasiperiodic phenomena of X-ray bursters seems to be related to this property of mass reservoir on the magnetosphere. We classify the typical dynamical state of the reservoir into three types with the parameters which are accretion rate acc and angular velocity of neutron star Ωs. They are nonsequential oscillation, sequential periodic (quasi-periodic) oscillation, and chaotic oscillation states.

2020 ◽  
Vol 497 (3) ◽  
pp. 2893-2898
Author(s):  
De-Hua Wang ◽  
Cheng-Min Zhang

ABSTRACT Parallel tracks in the relation between the lower kilohertz quasi-periodic oscillation (kHz QPO) frequency ν1 and the X-ray intensity I have been observed in the neutron star low-mass X-ray binary (NS-LMXB) 4U 1728−34, and we try to ascribe these phenomena to the bimodal accretion modes, i.e. the disc accretion and radial accretion. For the source with one constant radial accretion rate $\dot{M}_{\rm r}$, as the increase of the disc accretion rate $\dot{M}_{\rm d}$, the NS magnetosphere-disc radius can shrink from ∼18 to ∼16 km, while ν1 increases from ∼670 to ∼870 Hz. Then, due to the increase of the kHz QPO frequency and total X-ray intensity Itot, the source will trace out an oblique track in ν1–I relation. While, if the source enters another constant radial accretion rate due to the variation of the accretion environment, the increase of the disc accretion rate can arise another parallel track in ν1–I relation. Finally, the reliability of the theoretical assumptions, the variability of the accretion radius and accretion rate, as well as the dependence of the two accretion modes, are also investigated and discussed.


2001 ◽  
Vol 10 (05) ◽  
pp. 625-632 ◽  
Author(s):  
C. M. ZHANG

We ascribe the 15–60 Hz Quasi Periodic Oscillation (QPO) to the periastron precession frequency of the orbiting accreted matter at the boundary of magnetosphere-disk of X-ray neutron star (NS). Considering the relativistic motion mechanism for the kHz QPO, that the radii of the inner disk and magnetosphere-disk of NS are correlated with each other by a factor is assumed. The obtained conclusions include: all QPO frequencies increase with increasing the accretion rate. The theoretical relations between 15–60 Hz QPO (HBO) frequency and the twin kHz QPOs are similar to the measured empirical formula. Further, the better fitted NS mass by the proposed model is about 1.9 solar masses for the detected LMXBs.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Helei Liu ◽  
Masa-aki Hashimoto ◽  
Guoliang Lü ◽  
Yasuhide Matsuo ◽  
Dehua Wen ◽  
...  

Abstract As some neutron star transients require an additional unknown heat source (referred to as “shallow heating”) to explain their high temperatures at the beginning of quiescence, we investigate the effect of shallow heating as well as compressional heating on the thermal state of transiently accreting neutron stars with the use of evolutionary calculations in the present work. Through comparing our theoretical predictions of the equilibrium redshifted luminosities $(L_{\gamma}^{\infty})$ produced by both deep crustal heating and shallow heating/compressional heating for different time-averaged mass-accretion rates $\langle\dot{M}\rangle$ with 35 updated observations of soft X-ray transients, the results show that both shallow heating and compressional heating make significant contributions to the equilibrium redshifted luminosity. The hotter sources (XTE J1701, MAXI J0556, EXO 0748, Aql X-1 etc.) with higher accretion rates are more likely to be explained with the effect of shallow heating or compressional heating. In addition, for a proper shallow heat $q_\mathrm{sh}$ and mass-accretion rate $\dot{M}$, the effect of shallow heating could be simulated by compressional heating.


2019 ◽  
Vol 626 ◽  
pp. A18 ◽  
Author(s):  
Anna Chashkina ◽  
Galina Lipunova ◽  
Pavel Abolmasov ◽  
Juri Poutanen

We present a model for a super-Eddington accretion disc around a magnetized neutron star taking into account advection of heat and the mass loss by the wind. The model is semi-analytical and predicts radial profiles of all the basic physical characteristics of the accretion disc. The magnetospheric radius is found as an eigenvalue of the problem. When the inner disc is in radiation-pressure-dominated regime but does not reach its local Eddington limit, advection is mild, and the radius of the magnetosphere depends weakly on the accretion rate. Once it approaches the local Eddington limit the disc becomes advection-dominated, and the scaling for the magnetospheric radius with the mass accretion rate is similar to the classical Alfvén relation. Allowing for the mass loss in a wind leads to an increase in the magnetospheric radius. Our model can be applied to a wide variety of magnetized neutron stars accreting close to or above their Eddington limits: ultra-luminous X-ray pulsars, Be/X-ray binaries in outbursts, and other systems. In the context of our model we discuss the observational properties of NGC 5907 X-1, the brightest ultra-luminous pulsar currently known, and NGC 300 ULX1, which is apparently a Be/X-ray binary experiencing a very bright super-Eddington outburst.


2019 ◽  
Vol 490 (1) ◽  
pp. 752-757 ◽  
Author(s):  
W Tang ◽  
D Liu ◽  
B Wang

ABSTRACT Intermediate-mass binary pulsars (IMBPs) are composed of neutron stars (NSs) and CO/ONe white dwarfs (WDs). It is generally suggested that IMBPs evolve from intermediate-mass X-ray binaries (IMXBs). However, this scenario is difficult to explain the formation of IMBPs with orbital periods (Porb) less than 3 d. It has recently been proposed that a system consisting of an NS and a helium (He) star can form IMBPs with Porb less than 3 d (known as the NS+He star scenario), but previous works can only cover a few observed sources with short orbital periods. We aim to investigate the NS+He star scenario by adopting different descriptions of the Eddington accretion rate ($\skew4\dot{M}_{\rm Edd}$) for NSs and different NS masses (MNS) varying from $1.10$ to $1.80\, \rm M_{\odot }$. Our results can cover most of the observed IMBPs with short orbital periods and almost half of the observed IMBPs with long orbital periods. We found that $\skew4\dot{M}_{\rm Edd}$ ∝ MNS−1/3 could match the observations better than a specific value for all NSs. We also found that the final spin periods of NSs slightly decrease with the initial MNS. The observed parameters of PSR J0621+1002, which is one of the well-observed IMBPs whose pulsar mass has been precisely measured, can be reproduced by this work.


2020 ◽  
Vol 500 (2) ◽  
pp. 2475-2495
Author(s):  
Chichuan Jin ◽  
Chris Done ◽  
Martin Ward

ABSTRACT The active galactic nucleus (AGN) RE J1034+396 displays the most significant X-ray quasi-periodic oscillation (QPO) detected so far. We perform a detailed spectral-timing analysis of our recent simultaneous XMM–Newton, NuSTAR, and Swift observations. We present the energy dependence of the QPO’s frequency, rms, coherence, and phase lag, and model them together with the time-averaged spectra. Our study shows that four components are required to fit all the spectra. These components include an inner disc component (diskbb), two warm corona components (CompTT-1 and CompTT-2), and a hot corona component (nthComp). We find that diskbb, CompTT-2 (the hotter but less luminous component), and nthComp all contain the QPO signal, while CompTT-1 only exhibits stochastic variability. By fitting the lag spectrum, we find that the QPO in diskbb leads CompTT-2 by 679 s, and CompTT-2 leads nthComp by 180 s. By only varying the normalizations, these components can also produce good fits to the time-averaged and variability spectra obtained from previous observations when QPOs were present and absent. Our multiwavelength study shows that the detectability of the QPO does not depend on the contemporaneous mass accretion rate. We do not detect a significant Iron K α emission line, or any significant reflection hump. Finally, we show that the rms and lag spectra in the latest observation are very similar to the 67-Hz QPO observed in the micro-quasar GRS 1915+105. These new results support the physical analogy between these two sources. We speculate that the QPO in both sources is due to the expansion/contraction of the vertical structure in the inner disc.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850067 ◽  
Author(s):  
Yasuhide Matsuo ◽  
HeLei Liu ◽  
Masa-aki Hashimoto ◽  
Tsuneo Noda

We construct the quiescent neutron star models in the evolutionary calculations. The X-ray luminosities have been derived in terms of the time-averaged mass accretion rate for various neutron star masses and surface compositions. We compare the quiescent luminosities observed from X-ray transients in low mass X-ray binaries, where the stellar evolutionary calculations of accreting neutron stars include neutrino cooling due to strong pion condensations. Our results based on the evolutionary calculations suggest that stronger cooling process would be necessary to be consistent with observations.


2003 ◽  
Vol 12 (05) ◽  
pp. 825-831 ◽  
Author(s):  
S. O. TAGIEVA ◽  
E. YAZGAN ◽  
A. ANKAY

We examined the fall-back disk models, and in general accretion, proposed to explain the properties of AXPs and SGRs. We checked the possibility of some gas remaining around the neutron star after a supernova explosion. We also compared AXPs and SGRs with the X-ray pulsars in X-ray binaries. We conclude that the existing models of accretion from a fall-back disk are insufficient to explain the nature of AXPs and SGRs.


Sign in / Sign up

Export Citation Format

Share Document