scholarly journals Evolving neutron star+helium star systems to intermediate-mass binary pulsars

2019 ◽  
Vol 490 (1) ◽  
pp. 752-757 ◽  
Author(s):  
W Tang ◽  
D Liu ◽  
B Wang

ABSTRACT Intermediate-mass binary pulsars (IMBPs) are composed of neutron stars (NSs) and CO/ONe white dwarfs (WDs). It is generally suggested that IMBPs evolve from intermediate-mass X-ray binaries (IMXBs). However, this scenario is difficult to explain the formation of IMBPs with orbital periods (Porb) less than 3 d. It has recently been proposed that a system consisting of an NS and a helium (He) star can form IMBPs with Porb less than 3 d (known as the NS+He star scenario), but previous works can only cover a few observed sources with short orbital periods. We aim to investigate the NS+He star scenario by adopting different descriptions of the Eddington accretion rate ($\skew4\dot{M}_{\rm Edd}$) for NSs and different NS masses (MNS) varying from $1.10$ to $1.80\, \rm M_{\odot }$. Our results can cover most of the observed IMBPs with short orbital periods and almost half of the observed IMBPs with long orbital periods. We found that $\skew4\dot{M}_{\rm Edd}$ ∝ MNS−1/3 could match the observations better than a specific value for all NSs. We also found that the final spin periods of NSs slightly decrease with the initial MNS. The observed parameters of PSR J0621+1002, which is one of the well-observed IMBPs whose pulsar mass has been precisely measured, can be reproduced by this work.

2019 ◽  
Vol 626 ◽  
pp. A18 ◽  
Author(s):  
Anna Chashkina ◽  
Galina Lipunova ◽  
Pavel Abolmasov ◽  
Juri Poutanen

We present a model for a super-Eddington accretion disc around a magnetized neutron star taking into account advection of heat and the mass loss by the wind. The model is semi-analytical and predicts radial profiles of all the basic physical characteristics of the accretion disc. The magnetospheric radius is found as an eigenvalue of the problem. When the inner disc is in radiation-pressure-dominated regime but does not reach its local Eddington limit, advection is mild, and the radius of the magnetosphere depends weakly on the accretion rate. Once it approaches the local Eddington limit the disc becomes advection-dominated, and the scaling for the magnetospheric radius with the mass accretion rate is similar to the classical Alfvén relation. Allowing for the mass loss in a wind leads to an increase in the magnetospheric radius. Our model can be applied to a wide variety of magnetized neutron stars accreting close to or above their Eddington limits: ultra-luminous X-ray pulsars, Be/X-ray binaries in outbursts, and other systems. In the context of our model we discuss the observational properties of NGC 5907 X-1, the brightest ultra-luminous pulsar currently known, and NGC 300 ULX1, which is apparently a Be/X-ray binary experiencing a very bright super-Eddington outburst.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850067 ◽  
Author(s):  
Yasuhide Matsuo ◽  
HeLei Liu ◽  
Masa-aki Hashimoto ◽  
Tsuneo Noda

We construct the quiescent neutron star models in the evolutionary calculations. The X-ray luminosities have been derived in terms of the time-averaged mass accretion rate for various neutron star masses and surface compositions. We compare the quiescent luminosities observed from X-ray transients in low mass X-ray binaries, where the stellar evolutionary calculations of accreting neutron stars include neutrino cooling due to strong pion condensations. Our results based on the evolutionary calculations suggest that stronger cooling process would be necessary to be consistent with observations.


2003 ◽  
Vol 12 (05) ◽  
pp. 825-831 ◽  
Author(s):  
S. O. TAGIEVA ◽  
E. YAZGAN ◽  
A. ANKAY

We examined the fall-back disk models, and in general accretion, proposed to explain the properties of AXPs and SGRs. We checked the possibility of some gas remaining around the neutron star after a supernova explosion. We also compared AXPs and SGRs with the X-ray pulsars in X-ray binaries. We conclude that the existing models of accretion from a fall-back disk are insufficient to explain the nature of AXPs and SGRs.


2018 ◽  
Vol 14 (S346) ◽  
pp. 1-13
Author(s):  
Edward P. J. van den Heuvel

AbstractA summary is given of the present state of our knowledge of High-Mass X-ray Binaries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary.


2020 ◽  
Vol 29 (11) ◽  
pp. 2041015
Author(s):  
John L. Friedman ◽  
Nikolaos Stergioulas

The first inspiral of two neutron stars observed in gravitational waves was remarkably close, allowing the kind of simultaneous gravitational wave and electromagnetic observation that had not been expected for several years. Their merger, followed by a gamma-ray burst and a kilonova, was observed across the spectral bands of electromagnetic telescopes. These GW and electromagnetic observations have led to dramatic advances in understanding short gamma-ray bursts; determining the origin of the heaviest elements; and determining the maximum mass of neutron stars. From the imprint of tides on the gravitational waveforms and from observations of X-ray binaries, one can extract the radius and deformability of inspiraling neutron stars. Together, the radius, maximum mass, and causality constrain the neutron-star equation of state, and future constraints can come from observations of post-merger oscillations. We selectively review these results, filling in some of the physics with derivations and estimates.


1998 ◽  
Vol 15 (2) ◽  
pp. 250-253
Author(s):  
Jianke Li ◽  
Dayal T. Wickramasinghe

AbstractX-ray binaries in which the accreting component is a neutron star commonly exhibit significant changes in their spin. In the system Cen X-3, a disk accreting binary system, the pulsar was observed to spin up at a rate ḟ = 8 × 10−13 Hz s−1 when averaged over the past twenty years, but significant fluctuations were observed above this mean. Recent BASTE observations have disclosed that these fluctuations are much larger than previously noted, and appeared to be a system characteristic. The change in the spin state from spin-up to spin-down or vice-versa occurs on a time scale that is much shorter than the instrument can resolve (≤1 d), but appears always to be a similar amplitude, and to occur stochastically. These observations have posed a problem for the conventional torque–mass accretion relation for accreting pulsars, because in this model the spin rate is closely related to the accretion rate, and the latter needs to be finely tuned and to change abruptly to explain the observations. Here we review recent work in this direction and present a coherent picture that explains these observations. We also draw attention to some outstanding problems for future studies.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Helei Liu ◽  
Masa-aki Hashimoto ◽  
Guoliang Lü ◽  
Yasuhide Matsuo ◽  
Dehua Wen ◽  
...  

Abstract As some neutron star transients require an additional unknown heat source (referred to as “shallow heating”) to explain their high temperatures at the beginning of quiescence, we investigate the effect of shallow heating as well as compressional heating on the thermal state of transiently accreting neutron stars with the use of evolutionary calculations in the present work. Through comparing our theoretical predictions of the equilibrium redshifted luminosities $(L_{\gamma}^{\infty})$ produced by both deep crustal heating and shallow heating/compressional heating for different time-averaged mass-accretion rates $\langle\dot{M}\rangle$ with 35 updated observations of soft X-ray transients, the results show that both shallow heating and compressional heating make significant contributions to the equilibrium redshifted luminosity. The hotter sources (XTE J1701, MAXI J0556, EXO 0748, Aql X-1 etc.) with higher accretion rates are more likely to be explained with the effect of shallow heating or compressional heating. In addition, for a proper shallow heat $q_\mathrm{sh}$ and mass-accretion rate $\dot{M}$, the effect of shallow heating could be simulated by compressional heating.


Author(s):  
V. A. Torres-Sánchez ◽  
E. Contreras

Abstract In this work we obtain an anisotropic neutron star solution by gravitational decoupling starting from a perfect fluid configuration which has been used to model the compact object PSR J0348+0432. Additionally, we consider the same solution to model the Binary Pulsar SAX J1808.4-3658 and X-ray Binaries Her X-1 and Cen X-3 ones. We study the acceptability conditions and obtain that the MGD-deformed solution obey the same physical requirements as its isotropic counterpart. Finally, we conclude that the most stable solutions, according to the adiabatic index and gravitational cracking criterion, are those with the smallest compactness parameters, namely SAX J1808.4-3658 and Her X-1.


2021 ◽  
Vol 923 (1) ◽  
pp. 88
Author(s):  
Teresa Panurach ◽  
Jay Strader ◽  
Arash Bahramian ◽  
Laura Chomiuk ◽  
James C. A. Miller-Jones ◽  
...  

Abstract Accreting neutron stars in low-mass X-ray binaries show outflows—and sometimes jets—in the general manner of accreting black holes. However, the quantitative link between the accretion flow (traced by X-rays) and outflows and/or jets (traced by radio emission) is much less well understood for neutron stars than for black holes, other than the general observation that neutron stars are fainter in the radio at a given X-ray luminosity. We use data from the deep MAVERIC radio continuum survey of Galactic globular clusters for a systematic radio and X-ray study of six luminous (L X > 1034 erg s−1) persistent neutron star X-ray binaries in our survey, as well as two other transient systems also captured by our data. We find that these neutron star X-ray binaries show an even larger range in radio luminosity than previously observed. In particular, in quiescence at L X ∼ 3 × 1034 erg s−1, the confirmed neutron star binary GRS 1747–312 in Terzan 6 sits near the upper envelope of the black hole radio/X-ray correlation, and the persistently accreting neutron star systems AC 211 (in M15) and X1850–087 (in NGC 6712) show unusual radio variability and luminous radio emission. We interpret AC 211 as an obscured “Z source” that is accreting at close to the Eddington limit, while the properties of X1850–087 are difficult to explain, and motivate future coordinated radio and X-ray observations. Overall, our results show that neutron stars do not follow a single relation between inflow and outflow, and confirm that their accretion dynamics are more complex than for black holes.


2020 ◽  
Vol 642 ◽  
pp. A174 ◽  
Author(s):  
D. Misra ◽  
T. Fragos ◽  
T. M. Tauris ◽  
E. Zapartas ◽  
D. R. Aguilera-Dena

Context. Ultra-luminous X-ray sources (ULXs) are those X-ray sources located away from the centre of their host galaxy with luminosities exceeding the Eddington limit of a stellar-mass black hole (LX >  1039 erg s−1). Observed X-ray variability suggests that ULXs are X-ray binary systems. The discovery of X-ray pulsations in some of these objects (e.g. M82 X-2) suggests that a certain fraction of the ULX population may have a neutron star as the accretor. Aims. We present systematic modelling of low- and intermediate-mass X-ray binaries (LMXBs and IMXBs; donor-star mass range 0.92–8.0 M⊙ and neutron-star accretors) to explain the formation of this sub-population of ULXs. Methods. Using MESA, we explored the allowed initial parameter space of binary systems consisting of a neutron star and a low- or intermediate-mass donor star that could explain the observed properties of ULXs. These donors are transferring mass at super-Eddington rates while the accretion is limited locally in the accretion disc by the Eddington limit. Thus, our simulations take into account beaming effects and also include stellar rotation, tides, general angular momentum losses, and a detailed and self-consistent calculation of the mass-transfer rate. Results. Exploring the initial parameters that lead to the formation of neutron-star ULXs, we study the conditions that lead to dynamical stability of these systems, which depends strongly on the response of the donor star to mass loss. Using two values for the initial neutron star mass (1.3 M⊙ and 2.0 M⊙), we present two sets of mass-transfer calculation grids for comparison with observations of NS ULXs. We find that LMXBs/IMXBs can produce NS-ULXs with typical time-averaged isotropic-equivalent X-ray luminosities of between 1039 and 1041 erg s−1 on a timescale of up to ∼1.0 Myr for the lower luminosities. Finally, we estimate their likelihood of detection, the types of white-dwarf remnants left behind by the donors, and the total amount of mass accreted by the neutron stars. Conclusions. We show that observed super-Eddington luminosities can be achieved in LMXBs/IMXBs undergoing non-conservative mass transfer while assuming geometrical beaming. We also compare our results to the observed pulsating ULXs and infer their initial parameters. Our results suggest that a large subset of the observed pulsating ULX population can be explained by LMXBs/IMXBs in a super-Eddington mass-transfer phase.


Sign in / Sign up

Export Citation Format

Share Document