scholarly journals An Unsuccessful Search for White Dwarf Companions to Nearby Main Sequence Stars

1989 ◽  
Vol 114 ◽  
pp. 134-137
Author(s):  
Harry L. Shipman ◽  
Jeanne Geczi

AbstractMany of the nearest white dwarf stars (e.g., Sirius B and Procyon B) are in such binaries and would have remained undiscovered if they were even a little bit further away. White dwarfs which are sufficiently hot (T(eff) > 10,000 K) would, if present in binary systems with a relatively cool (F, G, K, or M) main–sequence secondary, be visible in IUE images as a hot companion to the main sequence star. We systematically examined 318 IUE images of 280 different G, K, and M stars which had been observed for other purposes. No previously undiscovered white dwarf stars were found.

1992 ◽  
Vol 9 ◽  
pp. 643-645
Author(s):  
G. Fontaine ◽  
F. Wesemael

AbstractIt is generally believed that the immediate progenitors of most white dwarfs are nuclei of planetary nebulae, themselves the products of intermediate- and low-mass main sequence evolution. Stars that begin their lifes with masses less than about 7-8 M⊙ (i.e., the vast majority of them) are expected to become white dwarfs. Among those which have already had the time to become white dwarfs since the formation of the Galaxy, a majority have burnt hydrogen and helium in their interiors. Consequently, most of the mass of a typical white dwarf is contained in a core made of the products of helium burning, mostly carbon and oxygen. The exact proportions of C and 0 are unknown because of uncertainties in the nuclear rates of helium burning.


2019 ◽  
Vol 486 (2) ◽  
pp. 2169-2183 ◽  
Author(s):  
S O Kepler ◽  
Ingrid Pelisoli ◽  
Detlev Koester ◽  
Nicole Reindl ◽  
Stephan Geier ◽  
...  

ABSTRACT White dwarfs carry information on the structure and evolution of the Galaxy, especially through their luminosity function and initial-to-final mass relation. Very cool white dwarfs provide insight into the early ages of each population. Examining the spectra of all stars with 3σ proper motion in the Sloan Digital Sky Survey Data Release 14, we report the classification for 20 088 spectroscopically confirmed white dwarfs, plus 415 hot subdwarfs, and 311 cataclysmic variables. We obtain Teff, log  g, and mass for hydrogen atmosphere white dwarf stars (DAs), warm helium atmosphere white dwarfs (DBs), hot subdwarfs (sdBs and sdOs), and estimate photometric Teff for white dwarf stars with continuum spectra (DCs). We find 15 793 sdAs and 447 dCs between the white dwarf cooling sequence and the main sequence, especially below $T_\mathrm{eff}\simeq 10\, 000$ K; most are likely low-mass metal-poor main-sequence stars, but some could be the result of interacting binary evolution.


2004 ◽  
Vol 215 ◽  
pp. 561-570 ◽  
Author(s):  
Steven D. Kawaler

White dwarfs rotate. The angular momentum in single white dwarfs must originate early in the life of the star, but also must be modified (and perhaps severely modified) during the many stages of evolution between birth as a main–sequence star and final appearance as a white dwarf. Observational constraints on the rotation of single white dwarf stars come from traditional spectroscopy and from asteroseismology, with the latter providing hints of angular velocity with depth. Results of these observational determinations, that white dwarfs rotate with periods ranging from hours to days (or longer), tells us that the processes by which angular momentum is deposited and/or drained from the cores of AGB stars are complex. Still, one can place strong limits on these processes by considering relatively simple limiting cases for angular momentum evolution in prior stages, and on subsequent angular momentum evolution in the white dwarfs. These limiting-case constraints will be reviewed in the context of the available observations.


2017 ◽  
Vol 45 ◽  
pp. 1760023
Author(s):  
S. O. Kepler ◽  
Alejandra Daniela Romero ◽  
Ingrid Pelisoli ◽  
Gustavo Ourique

White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5[Formula: see text]000 to 39[Formula: see text]000. This number includes only white dwarf stars with [Formula: see text], i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.


2009 ◽  
Vol 5 (H15) ◽  
pp. 370-370
Author(s):  
A. Romero ◽  
A. H. Córsico ◽  
L. G. Althaus ◽  
E. García-Berro

Hot DQ white dwarfs constitute a new class of white dwarf stars, uncovered recently within the framework of SDSS project. There exist nine of them, out of a total of several thousands white dwarfs spectroscopically identified. Recently, three hot DQ white dwarfs have been reported to exhibit photometric variability with periods compatible with pulsation g-modes. In this contribution, we presented the results of a non-adiabatic pulsation analysis of the recently discovered carbon-rich hot DQ white dwarf stars. Our study relies on the full evolutionary models of hot DQ white dwarfs recently developed by Althaus et al. (2009), that consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Specifically, we performed a stability analysis on white dwarf models from stages before the blue edge of the DBV instability strip (Teff ≈ 30000 K) until the domain of the hot DQ white dwarfs (18000-24000 K), including the transition DB→hot DQ white dwarf. We explore evolutionary models with M*= 0.585M⊙ and M* = 0.87M⊙, and two values of thickness of the He-rich envelope (MHe = 2 × 10−7M* and MHe = 10−8M*).


2003 ◽  
Vol 12 (1) ◽  
Author(s):  
G. Handler

AbstractI have collected all the WET archival data on the pulsating DB white dwarf stars (DBVs) and re-reduced them. In addition, the WET has recently observed three DBVs. Preliminary results on PG 1115+158, PG 1351+489, KUV 05134+2605, PG 1654+160 and PG 1456+103 are presented, and the future use of the data is outlined.


1978 ◽  
Vol 80 ◽  
pp. 117-120
Author(s):  
Harry L. Shipman

The status of determinations of white dwarf radii by model atmosphere methods is reviewed in this paper. Details will appear elsewhere (Shipman 1978). In brief, the results are that (i) the mean radius of a sample of 95 hydrogen-rich stars with parallaxes is 0.0131 R⊙; (ii) the mean radius of a sample of 13 helium-rich stars is 0.011 R⊙, indistinguishably different from the radius of the hydrogen-rich stars; and (iii) that the most serious limitation on our knowledge of the mean radius of white dwarfs is the influence of selection effects. An estimate of the selection effects indicates that the true mean white dwarf radius is near 0.011 R⊙.


2003 ◽  
Vol 211 ◽  
pp. 257-260
Author(s):  
Nick Siegler ◽  
Laird M. Close ◽  
Eric E. Mamajek ◽  
Melanie Freed

We have used the adaptive optics system Hōkūpa'a at Gemini North to search for companions from a flux-limited (Ks > 12) survey of 30 nearby M6.0–M7.5 dwarfs. Our observations, which are sensitive to companions with separations > 0.1″ (~ 2.8 AU), detect 3 new binary systems. This implies an overall binary fraction of 9±4% for M6.0–M7.5 binaries. This binary frequency is somewhat less than the 19±7% measured for late M stars and ~ 20% for L stars, but is still statistically consistent. However, the result is significantly lower than the binary fractions observed amongst solar mass main sequence stars (~60%) and early M stars (~35%).


1971 ◽  
Vol 42 ◽  
pp. 67-76 ◽  
Author(s):  
J. B. Oke ◽  
H. L. Shipman

White dwarf stars are among the most challenging and interesting objects which can be studied. Because they represent the interiors of highly-evolved stars, the chemical composition can be enormously variable from object to object. Furthermore, because of the very large gravities, the composition of the atmosphere may be very different from that in the interior. The theory of the degenerate interior provides a relation among mass, radius and chemical composition. Since temperatures, effective gravities, and redshifts can, for certain stars, provide further relations between mass and radius, one can hope to make checks on the theory which are not possible with ordinary stars.


1989 ◽  
Vol 114 ◽  
pp. 384-387
Author(s):  
James Liebert ◽  
F. Wesemael ◽  
D. Husfeld ◽  
R. Wehrse ◽  
S. G. Starrfield ◽  
...  

First reported at the IAU Colloquium No. 53 on White Dwarfs (McGraw et al. 1979), PG 1159-035 (GW Vir) is the prototype of a new class of very hot, pulsating, pre-white dwarf stars. It shows complicated, nonradial pulsation modes which have been studied exhaustively, both observationally and theoretically. The effective temperature has been crudely estimated as 100,000 K with log g ~ 7 (Wesemael, Green and Liebert 1985, hereafter WGL).


Sign in / Sign up

Export Citation Format

Share Document