scholarly journals The Formation and Evolution of Symbiotic Stars

1988 ◽  
Vol 103 ◽  
pp. 311-321
Author(s):  
R.F. Webbink

AbstractThe evolutionary origins of symbiotic stars containing (i) disk-accreting main sequence stars, (ii) wind-fed, shell-burning white dwarfs, and (iii) disk-accreting neutron stars are described. Of particular interest are those white dwarf systems which have orbital periods too short to have escaped tidal mass transfer prior to becoming symbiotics. We show here that, under suitable circumstances, low-mass, long period binaries may undergo quasi-conservative mass transfer, rather than evolving through common envelope evolution to the cataclysmic variable state, thus accounting for the existence of these systems. Approximate expressions are given for the lifetimes, and relative efficiencies (mass accreted/mass of donor) for different modes of interaction among symbiotic binary systems.

2021 ◽  
pp. 25-30
Author(s):  
J. Petrovic

This paper presents detailed evolutionary models of low-mass binary systems (1.25 + 1 M?) with initial orbital periods of 10, 50 and 100 days and accretion efficiency of 10%, 20%, 50%, and a conservative assumption. All models are calculated with the MESA (Modules for Experiments in Stellar Astrophysics) evolutionary code. We show that such binary systems can evolve via a stable Case B mass transfer into long period helium white dwarf systems.


2018 ◽  
Vol 618 ◽  
pp. A50 ◽  
Author(s):  
M. I. Saladino ◽  
O. R. Pols ◽  
E. van der Helm ◽  
I. Pelupessy ◽  
S. Portegies Zwart

In low-mass binary systems, mass transfer is likely to occur via a slow and dense stellar wind when one of the stars is in the asymptotic giant branch (AGB) phase. Observations show that many binaries that have undergone AGB mass transfer have orbital periods of 1–10 yr, at odds with the predictions of binary population synthesis models. In this paper we investigate the mass-accretion efficiency and angular-momentum loss via wind mass transfer in AGB binary systems and we use these quantities to predict the evolution of the orbit. To do so, we perform 3D hydrodynamical simulations of the stellar wind lost by an AGB star in the time-dependent gravitational potential of a binary system, using the AMUSE framework. We approximate the thermal evolution of the gas by imposing a simple effective cooling balance and we vary the orbital separation and the velocity of the stellar wind. We find that for wind velocities higher than the relative orbital velocity of the system the flow is described by the Bondi-Hoyle-Lyttleton approximation and the angular-momentum loss is modest, which leads to an expansion of the orbit. On the other hand, for low wind velocities an accretion disk is formed around the companion and the accretion efficiency as well as the angular-momentum loss are enhanced, implying that the orbit will shrink. We find that the transfer of angular momentum from the binary orbit to the outflowing gas occurs within a few orbital separations from the centre of mass of the binary. Our results suggest that the orbital evolution of AGB binaries can be predicted as a function of the ratio of the terminal wind velocity to the relative orbital velocity of the system, v∞/vorb. Our results can provide insight into the puzzling orbital periods of post-AGB binaries. The results also suggest that the number of stars entering into the common-envelope phase will increase, which can have significant implications for the expected formation rates of the end products of low-mass binary evolution, such as cataclysmic binaries, type Ia supernovae, and double white-dwarf mergers.


2021 ◽  
Vol 922 (2) ◽  
pp. 174
Author(s):  
Kenny X. Van ◽  
Natalia Ivanova

Abstract We present a new method for constraining the mass transfer evolution of low-mass X-ray binaries (LMXBs)—a reverse population synthesis technique. This is done using the detailed 1D stellar evolution code MESA (Modules for Experiments in Stellar Astrophysics) to evolve a high-resolution grid of binary systems spanning a comprehensive range of initial donor masses and orbital periods. We use the recently developed convection and rotation-boosted (CARB) magnetic braking scheme. The CARB magnetic braking scheme is the only magnetic braking prescription capable of reproducing an entire sample of well-studied persistent LMXBs—those with mass ratios, periods, and mass transfer rates that have been observationally determined. Using the reverse population synthesis technique, where we follow any simulated system that successfully reproduces an observed LMXB backward, we have constrained possible progenitors for each observed well-studied persistent LMXB. We also determined that the minimum number of LMXB formations in the Milky Way is 1500 per Gyr if we exclude Cyg X-2. For Cyg X-2, the most likely formation rate is 9000 LMXB Gyr−1. The technique we describe can be applied to any observed LMXB with well-constrained mass ratio, period, and mass transfer rate. With the upcoming GAIA DR3 containing information on binary systems, this technique can be applied to the data release to search for progenitors of observed persistent LMXBs.


1983 ◽  
Vol 72 ◽  
pp. 257-262
Author(s):  
H. Ritter

ABSTRACTIt is shown that the secondary components of cataclysmic binaries with orbital periods of less than ~10 hours are indistinguishable from ordinary low-mass main-sequence stars and that, therefore, they are essentially unevolved. On the other hand, it is shown that, depending on the mass ratio of the progenitor system, the secondary of a cataclysmic binary could be significantly evolved. The fact that nevertheless most of the observed secondaries are essentially unevolved can be accounted for by assuming that the probability distribution for the initial mass ratio is not strongly peaked towards unity mass ratio.


1997 ◽  
Vol 163 ◽  
pp. 828-829 ◽  
Author(s):  
R. F. Webbink ◽  
V. Kalogera

AbstractConsiderations of donor star stability, age, and mass transfer rate show that low-mass X-ray binaries and binary millisecond pulsars with orbital periods longer than a few days must have survived an initial phase of super-Eddington mass transfer. We review the physical arguments leading to this conclusion, and examine its implications for the apparent discrepancy between the death rate for low-mass X-ray binaries and the birth rate of binary millisecond pulsars.


2004 ◽  
Vol 194 ◽  
pp. 33-34
Author(s):  
Joanna Mikołajewska

AbstractOrbital periods and other parameters of symbiotic binary systems in the LMC and SMC are presented and discussed. In particular, the symbiotic stars in the MCs are compared with those in the Milky Way.


2000 ◽  
Vol 177 ◽  
pp. 43-44
Author(s):  
Scott M. Ransom

AbstractI describe a computationally simple, efficient, and sensitive method to search long observations for pulsars in binary systems. The technique looks for orbitally induced sidebands in the power spectrum around a nominal spin frequency, enabling it to detect pulsars in high- or low-mass binaries with short orbital periods (Porb≲ 5 h).


2003 ◽  
Vol 211 ◽  
pp. 257-260
Author(s):  
Nick Siegler ◽  
Laird M. Close ◽  
Eric E. Mamajek ◽  
Melanie Freed

We have used the adaptive optics system Hōkūpa'a at Gemini North to search for companions from a flux-limited (Ks > 12) survey of 30 nearby M6.0–M7.5 dwarfs. Our observations, which are sensitive to companions with separations > 0.1″ (~ 2.8 AU), detect 3 new binary systems. This implies an overall binary fraction of 9±4% for M6.0–M7.5 binaries. This binary frequency is somewhat less than the 19±7% measured for late M stars and ~ 20% for L stars, but is still statistically consistent. However, the result is significantly lower than the binary fractions observed amongst solar mass main sequence stars (~60%) and early M stars (~35%).


2020 ◽  
Vol 493 (2) ◽  
pp. 2171-2177 ◽  
Author(s):  
M A De Vito ◽  
O G Benvenuto ◽  
J E Horvath

ABSTRACT We analyse the evolution of close binary systems containing a neutron star that lead to the formation of redback pulsars. Recently, there has been some debate on the origin of such systems and the formation mechanism of redbacks may still be considered as an open problem. We show that the operation of a strong evaporation mechanism, starting from the moment when the donor star becomes fully convective (or alternatively since the formation of the neutron star by accretion-induced collapse), produces systems with donor masses and orbital periods in the range corresponding to redbacks with donors appreciably smaller than their Roche lobes, i.e. they have low filling factors (lower than 0.75). Models of redback pulsars can be constructed assuming the occurrence of irradiation feedback. They have been shown to undergo cyclic mass transfer during the epoch at which they attain donor masses and orbital periods corresponding to redbacks, and stay in quasi-Roche lobe overflow conditions with high filling factors. We show that, if irradiation feedback occurs and radio ejection inhibits further accretion on to the neutron star after the first mass transfer cycle, the redback systems feature high filling factors. We suggest that the filling factor should be considered as a useful tool for discriminating among those redback formation mechanisms. We compare theoretical results with available observations and conclude that observations tend to favour models with high filling factors.


2015 ◽  
Vol 2 (1) ◽  
pp. 188-191 ◽  
Author(s):  
L. Schmidtobreick ◽  
C. Tappert

The population of cataclysmic variables with orbital periods right above the period gap are dominated by systems with extremely high mass transfer rates, the so-called SW Sextantis stars. On the other hand, some old novae in this period range which are expected to show high mass transfer rate instead show photometric and/or spectroscopic resemblance to low mass transfer systems like dwarf novae. We discuss them as candidates for so-called hibernating systems, CVs that changed their mass transfer behaviour due to a previously experienced nova outburst. This paper is designed to provide input for further research and discussion as the results as such are still very preliminary.


Sign in / Sign up

Export Citation Format

Share Document