The Comparison of Helium-Like Ion Emission Line Ratios with Solar X-Ray Spectral Data

1988 ◽  
Vol 102 ◽  
pp. 331-334
Author(s):  
S.M. McCann ◽  
F.P. Keenan

AbstractElectron impact excitation rates recently calculated by Keenan, McCann and Kingston for transitions in the He-like ions Al XII, Si XIII and S XV are used to derive the electron temperature sensitive emission line ratio G and the density sensitive ratio R in its low density limit (Ro). These ratios are compared with those calculated by other authors and with the values obtained for solar flares using instruments on board the P78-1 and Solar Maximum Mission satellites. In general it is found that our results resolve discrepancies which currently exist between observation and theory, which provides experimental support for the methods and atonic data adopted in the present analysis.

Solar flare spectra in the ultraviolet and X-ray wavelength regions are rich in emission lines from highly ionized ions, formed at temperatures around 10 7 K. These lines can be used as valuable diagnostics for probing the physical conditions in solar flares. Such analyses require accurate atomic data for excitation, ionization and recombination processes. In this paper, we present a review of work which has already been carried out, in particular for the Solar Maximum Mission observations, and we look to future requirements for Solar-A .


X -ray and ultraviolet observations of flares have provided much important information on their spatial structure and magnetic topology. The early observations from Skylab emphasized the role of simple loops and loop arcades, but later observations from the Solar Maximum Mission have greatly complicated this picture. Flares appear in a multitude of loops with complex spatial and temporal interrelations. In many cases, interactions between different loops appear to play a crucial role. The inferred magnetic topology of solar flares will be reviewed with emphasis on the implications for processes of energy release and transfer. It will be shown that the spatial resolution of the observations obtained so far is still inadequate for solving many basic questions of solar flare research.


2011 ◽  
Vol 526 ◽  
pp. A115 ◽  
Author(s):  
C. Malespin ◽  
C. P. Ballance ◽  
M. S. Pindzola ◽  
M. C. Witthoeft ◽  
T. R. Kallman ◽  
...  

During the period of the 1980 solar maximum three space missions (P78-1, Solar Maximum Mission and Hinotori ) carried out extensive studies of solar flares. In their different ways all of these missions contributed significant new information to our understanding of the solar flare phenomenon. In this volume the contribution made by these three spacecraft to the study of the energy release and the related creation of high-tem perature plasma, the transport of energy from the primary release site, the production of gamma-rays at energies up to 10 MeV and the ejection of solar matter into interplanetary space are reviewed.


1983 ◽  
Vol 71 ◽  
pp. 289-305
Author(s):  
G.M. Simnett

Observationally the study of solar flares has reached the stage where intensity-time distributions of emission over broad and resolved regions of the electromagnetic spectrum are obtained for spatially resolved parts of the flare. Polarization measurements add an important diagnostic tool in some wavebands but we shall not report on these here. In the optical band good ground based observations have been available for many years, whereas in the UV, soft X-ray and hard X-ray (> 5 keV) bands recent spacecraft have greatly extended the data base. Good high resolution maps are being made in the microwave region with the ground based VIA. We are now at the point where significant progress into understanding the flare problem has been made, and will continue to be made, during the current solar maximum. This coincides with the development of soft X-ray instruments sensitive enough to detect transient and quiescent emission from flare stars, particularly red dwarfs in the solar neighbourhood (e.g. Kahn et al,1979, Haisch et al, 1980) which previously had only been detected in the optical and radio wavebands.


2006 ◽  
Vol 84 (1) ◽  
pp. 67-81 ◽  
Author(s):  
G Machtoub ◽  
J.R. Crespo López-Urrutia ◽  
X Zhang ◽  
H Tawara

A theoretical simulation of complex K X-ray spectra including those from dielectronic recombination and excitation processes is presented for trapped highly charged germanium ions ( Geq+, q = 27–30) interacting with a dense electron beam. We carried out numerical calculations of transition rates, level energies, transition wavelengths, resonance and collision strengths, and satellite intensity factors. Analytical results related to cross sections of B- through He-like Ge ions were obtained as well. The simulated spectra, including the contribution from different charge states of Ge27+–Ge30+, show good overall agreement over a wide electron energy range with the available X-ray measurements from the Heidelberg electron beam ion trap (EBIT). We have also predicted the electron impact excitation cross-section ratios for different transitions of Ge29+ and Ge30+ ions. It should be emphasized that the present analysis can also provide new information and clues of possible temperature measurements for EBIT and other plasma diagnostics.PACS No.: 32.30.Rj


Sign in / Sign up

Export Citation Format

Share Document