scholarly journals Sources of Interplanetary Dust

1996 ◽  
Vol 150 ◽  
pp. 141-153 ◽  
Author(s):  
S.F. Dermott ◽  
K. Grogan ◽  
B.Å.S. Gustafson ◽  
S. Jayaraman ◽  
S.J. Kortenkamp ◽  
...  

AbstractAsteroids, comets and interstellar dust are possible sources of the particles that constitute the dust in the inner solar system. Each of these components gives rise to particular, characteristic features, the amplitudes of which can be used to estimate the size of the associated source. The asteroidal component feeds the dust bands and the Earth's resonant ring, while the cometary component may account for the large scale height of the zodiacal cloud observed at 1 AU Previous discussions of the observed strengths of these various features indicated that the source of about one third of the thermal flux observed, for example, in the IRAS 25μm waveband is asteroidal, while two thirds is cometary. However, a variety of assumptions go into this calculation (the size-frequency distribution of the particles is particularly significant) and we now know that the result is highly dependent on these assumptions. The zodiacal cloud is also the source of the IDPs collected on Earth. Because of strong gravitational focusing by the Earth of particles in low e and I orbits, it is probable that the majority of IDPs originate from asteroids, particularly those asteroids in the Themis and Koronis families.

Author(s):  
George J. Flynn

Scattered sunlight from interplanetary dust particles, mostly produced by comets and asteroids, orbiting the Sun are visible at dusk or dawn as the Zodiacal Cloud. Impacts onto the space-exposed surfaces of Earth-orbiting satellites indicate that, in the current era, thousands of tons of interplanetary dust enters the Earth’s atmosphere every year. Some particles vaporize forming meteors while others survive atmospheric deceleration and settle to the surface of the Earth. NASA has collected interplanetary dust particles from the Earth’s stratosphere using high-altitude aircraft since the mid-1970s. Detailed characterization of these particles shows that some are unique samples of Solar System and presolar material, never affected by the aqueous and thermal processing that overprints the record of formation from the Solar Protoplanetary Disk in the meteorites. These particles preserve the record of grain and dust formation from the disk. This record suggests that many of the crystalline minerals, dominated by crystalline silicates (olivine and pyroxene) and Fe-sulfides, condensed from gas in the inner Solar System and were then transported outward to the colder outer Solar System where carbon-bearing ices condensed on the surfaces of the grains. Irradiation by solar ultraviolet light and cosmic rays produced thin organic coatings on the grain surfaces that likely aided in grain sticking, forming the first dust particles of the Solar System. This continuous, planet-wide rain of interplanetary dust particles can be monitored by the accumulation of 3He, implanted into the interplanetary dust particles by the Solar Wind while they were in space, in oceanic sediments. The interplanetary dust, which is rich in organic carbon, may have contributed important pre-biotic organic matter important to the development of life to the surface of the early Earth.


1996 ◽  
Vol 150 ◽  
pp. 163-166
Author(s):  
Jer-Chyi Liou ◽  
Herbert A. Zook ◽  
Stanley F. Dermott

AbstractThe recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population at 1 AU. We have completed a numerical study of the orbital evolution of dust grains, of diameters 1 to 9 μm, that originate in the region of the Kuiper belt. Our results show that about 80% of the grains are ejected from the Solar System by the giant planets while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, these dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances to be captured by the Earth and makes them a possible source of the collected interplanetary dust particles (IDPs); in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth.When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains larger than about 9 μm appear likely to be collisionally shattered before they can evolve to the inner part of the Solar System. Therefore, Kuiper belt dust grains may not, as they are expected to be small, contribute significantly to the zodiacal light.


The assumption that the Zodiacal Cloud is a predominantly meteoritic rather than a meteoroidal complex is questioned. On the basis of (i) the observed exposure ages of interplanetary dust particles collected from the stratosphere, (ii) the compressive strength of the commonest fireballs, (iii) the existence of a broad ecliptic stream centred on the Taurids and (iv) the observation of substantial short-lived meteoroid swarms therein, a suitably consistent replenishment model is constructed in which the Zodiacal Cloud appears to derive from a now defunct large comet that arrived in an Earth-crossing orbit ca. 10-100 ka ago. A corollary of this model is that the latter’s remnant, a surviving large meteoroid, may be reactivated as a comet at intervals of ca. 1 ka giving rise to a variety of observable effects such as Zodiacal Cloud enhancements and rare multiple bombardments of the Earth by many bodies with masses at least 10 11 g, which typify a general process throughout Earth history responsible for climatic excursions and extinction events. It is recommended that a search be conducted for the large meteoroid or minor planet responsible for the dust now in the Solar System, to place our understanding of the latter’s evolution on a secure quantitative basis. If verified, this model would have profound implications so far as our understanding of the origin of comets is concerned because most of the cometary mass would apparently be contained in large differentiated bodies.


1994 ◽  
Vol 160 ◽  
pp. 127-142 ◽  
Author(s):  
S. F. Dermott ◽  
D. D. Durda ◽  
B. A. S. Gustafson ◽  
S. Jayaraman ◽  
J. C. Liou ◽  
...  

One of the outstanding problems in solar system science is the source of the particles that constitute the zodiacal cloud. The zodiacal dust bands discovered by IRAS have a pivotal role in this debate because, without doubt, they are the small, tail end products of asteroidal collisions. Geometrical arguments are probably the strongest and the plane of symmetry of the dust bands places their source firmly in the asteroid belt. A cometary source, Comet Encke for example, could exist at the distance of the mainbelt, but the dynamics of cometary orbits makes the formation of cometary dust bands impossible, unless, of course, there is a significant (comparable in volume to the asteroidal families) source of comets interior to the orbit of Jupiter with low (asteroidal) orbital eccentricities. We have suggested that the dust bands are associated with the prominent asteroidal families. The link with the Themis and Koronis families is good but the link with Eos remains to be proved. We show here by detailed modeling that even though the filtered infrared flux in the 25μm waveband associated with the dust bands is only ~1% of the total signal, this is only the “tip of the iceberg” and that asteroidal dust associated with the bands constitutes ~10% of the zodiacal cloud. This result, plus the observed size-frequency distribution of mainbelt asteroids and the observed ratio of the number of family to non-family asteroids allows us to estimate that asteroidal dust accounts for about one third of the zodiacal cloud. The discovery of the “leading-trailing” asymmetry of the zodiacal cloud in the IRAS data and our interpretation of this asymmetry in terms of a ring of asteroidal particles in resonant lock with the Earth is important for two reasons. (1) The existence of the ring strongly suggests that large (diameter ≥ 12μm) asteroidal particles (or particles with low orbital eccentricities) are transported to the inner solar system by drag forces. (2) The observed ratio of the trailing-leading asymmetry allows an independent estimate of the contribution of asteroidal particles to the zodiacal cloud. These new results have important implications for the source of the interplanetary dust particles (IDPs) collected at the Earth. Because asteroidal particles constitute about one third of the zodiacal cloud and are transported to the inner solar system by drag forces, gravitational focussing by the Earth that results in the preferential capture of particles from orbits with low inclinations and low eccentricities and the possible “funneling” effect of the ring itself, imply that nearly all of the unmelted IDPs collected at the Earth are asteroidal.


1994 ◽  
Vol 160 ◽  
pp. 367-380
Author(s):  
Eberhard Grün

In-situ measurements of micrometeoroids provide information on the spatial distribution of interplanetary dust and its dynamical properties. Pioneers 10 and 11, Galileo and Ulysses spaceprobes took measurements of interplanetary dust from 0.7 to 18 AU distance from the sun. Distinctly different populations of dust particles exist in the inner and outer solar system. In the inner solar system, out to about 3 AU, zodiacal dust particles are recognized by their scattered light, their thermal emission and by in-situ detection from spaceprobes. These particles orbit the sun on low inclination (i ≤ 30°) and moderate eccentricity (e ≤ 0.6) orbits. Their spatial density falls off with approximately the inverse of the solar distance. Dust particles on high inclination or even retrograde trajectories dominate the dust population outside about 3 AU. The dust detector on board the Ulysses spaceprobe identified interstellar dust sweeping through the outer solar system on hyperbolic trajectories. Within about 2 AU from Jupiter Ulysses discovered periodic streams of dust particles originating from within the jovian system.


2018 ◽  
Vol 115 (26) ◽  
pp. 6608-6613 ◽  
Author(s):  
Hope A. Ishii ◽  
John P. Bradley ◽  
Hans A. Bechtel ◽  
Donald E. Brownlee ◽  
Karen C. Bustillo ◽  
...  

The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous (a-) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicrona-silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalousa-silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some witha-silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds.


2021 ◽  
Vol 937 (4) ◽  
pp. 042010
Author(s):  
S V Dubrova ◽  
P I Egorov ◽  
P S Zelenkovskiy ◽  
I I Podlipskiy ◽  
E M Nesterov

Abstract The characteristic features of our time are globalization and the intensification of human activities, which lead to large-scale changes in the environment. There are more crisis points, they are interconnected, and the problems that arise at the same time become more complicated. In this case, we should already talk about the possibility of a global environmental crisis, and therefore any more or less large project should take into account environmental risks. That is, each object of geo-ecological research is considered both as an independent self-organizing system and as part of a larger system. It is the initial approach to the study and construction of a conceptual model, the trajectory of data processing of the object of research that currently causes the greatest number of disputes and difficulties. Often, the entire volume of problems related to the interpretation of data, their lack, complexity of processing, inconsistency with the real state of affairs, is associated precisely with the initial spatial approach to research, that is, with the sphere of epistemological tools of the thinking style.


2001 ◽  
Vol 204 ◽  
pp. 17-34 ◽  
Author(s):  
Leonid M. Ozernoy

This review is based on extensive work done in collaboration with N. Gorkavyi, J. Mather, and T. Taidakova, which aimed at physical modeling of the interplanetary dust (IPD) cloud in the Solar System, i.e., establishing a link between the observable characteristics of the zodiacal cloud and the dynamical and physical properties of the parent minor bodies. Our computational approach permits one to integrate the trajectories of hundreds of particles and to effectively store up to 1010–11 positions with modest computer resources, providing a high fidelity 3D distribution of the dust. Our numerical codes account for the major dynamical effects that govern the motion of IPD particles: Poynting-Robertson (P-R) drag and solar wind drag; solar radiation pressure; particle evaporation; gravitational scattering by the planets; and the influence of mean-motion resonances. The incorporation of secular resonances and collisions of dust particles (both mutual and with interstellar dust) is underway. We have demonstrated the efficacy of our codes by performing the following analyses: (i) simulation of the distribution of Centaurs (comets scattered in their journey from the Kuiper belt inward in the Solar System) and revealing the effects of the outer planets in producing ‘cometary belts’; (ii) detailed inspection of a rich resonant structure found in these belts, which predicts the existence of gaps similar to the Kirkwood gaps in the main asteroid belt; (iii) a preliminary 3-D physical model of the IPD cloud, which includes three dust components – asteroidal, cometary, and kuiperoidal – and is consistent with the available data of Pioneer and Voyager dust detectors; (iv) modeling of the IPD cloud, which provides a zodiacal light distribution in accord, to the order of 1%, with a subset of the COBE/DIRBE observations; and (v) showing that the resonant structure in dusty circumstellar disks of Vega and Epsilon Eridani is a signature of embedded extrasolar planets. Further improvements of our modeling and their importance for astronomy and cosmology are outlined.


2019 ◽  
Vol 628 ◽  
pp. A109 ◽  
Author(s):  
R. H. Soja ◽  
E. Grün ◽  
P. Strub ◽  
M. Sommer ◽  
M. Millinger ◽  
...  

Context. The interplanetary dust complex is currently understood to be largely the result of dust production from Jupiter-family comets, with contributions also from longer-period comets (Halley- and Oort-type) and collisionally produced asteroidal dust. Aims. Here we develop a dynamical model of the interplanetary dust cloud from these source populations in order to develop a risk and hazard assessment tool for interplanetary meteoroids in the inner solar system. Methods. The long-duration (1 Myr) integrations of dust grains from Jupiter-family and Halley-type comets and main belt asteroids were used to generate simulated distributions that were compared to COBE infrared data, meteor data, and the diameter distribution of lunar microcraters. This allowed the constraint of various model parameters. Results. We present here the first attempt at generating a model that can simultaneously describe these sets of observations. Extended collisional lifetimes are found to be necessary for larger (radius ≥ 150 μm) particles. The observations are best fit with a differential size distribution that is steep (slope = 5) for radii ≥ 150 μm, and shallower (slope = 2) for smaller particles. At the Earth the model results in ~ 90–98% Jupiter-family comet meteoroids, and small contributions from asteroidal and Halley-type comet particles. In COBE data we find an approximately 80% contribution from Jupiter-family comet meteoroids and 20% from asteroidal particles. The resulting flux at the Earth is mostly within a factor of about two to three of published measurements.


Sign in / Sign up

Export Citation Format

Share Document