scholarly journals Investigations of the Oxygen-18 Content of Samples from Snow Pits and Ice Cores from the Filchner-Ronne Ice Shelves and Ekström Ice Shelf

1985 ◽  
Vol 7 ◽  
pp. 49-53 ◽  
Author(s):  
O. Reinwarth ◽  
W. Graf ◽  
W. Stichler ◽  
H. Moser ◽  
H. Oerter

Since 1979–80, isotope studies with oxygen-18 (18O) have been carried out at several snow pits and ice cores near the German Georg-von-Neumayer station (Ekström ice shelf, Atka Bay), as well as from the Filchner-Ronne ice shelves, in the framework of the German Antarctic research programme. The investigations of snow pits on the Filchner-Ronne ice shelves yield a standard deviation for the annual average δ18O values of approximately 1‰ over the last five years, and a decrease of δ18O with distance from the ice edge of about 1‰ per 50 km. The variation of δ18O for stratigraphically matching snow layers from snow pits at the same location in different years is about 0.3‰ on the Filchner-Ronne ice shelves, and 0.8‰ at Georg-von-Neumayer station. The mean annual accumulation rate in the surroundings of Georg-von-Neumayer station was determined to be 34 g cm-2 for the years 1977–81. On the Filchner-Ronne ice shelves the mean annual accumulation rate (1979–83) decreases from 22 g cm−2 at Filchner station to 15 g cm−2 at traverse point T340, located 200 km southeast of Filchner station.

1985 ◽  
Vol 7 ◽  
pp. 49-53 ◽  
Author(s):  
O. Reinwarth ◽  
W. Graf ◽  
W. Stichler ◽  
H. Moser ◽  
H. Oerter

Since 1979–80, isotope studies with oxygen-18 (18O) have been carried out at several snow pits and ice cores near the German Georg-von-Neumayer station (Ekström ice shelf, Atka Bay), as well as from the Filchner-Ronne ice shelves, in the framework of the German Antarctic research programme. The investigations of snow pits on the Filchner-Ronne ice shelves yield a standard deviation for the annual average δ18O values of approximately 1‰ over the last five years, and a decrease of δ18O with distance from the ice edge of about 1‰ per 50 km. The variation of δ18O for stratigraphically matching snow layers from snow pits at the same location in different years is about 0.3‰ on the Filchner-Ronne ice shelves, and 0.8‰ at Georg-von-Neumayer station. The mean annual accumulation rate in the surroundings of Georg-von-Neumayer station was determined to be 34 g cm-2 for the years 1977–81. On the Filchner-Ronne ice shelves the mean annual accumulation rate (1979–83) decreases from 22 g cm−2 at Filchner station to 15 g cm−2 at traverse point T340, located 200 km southeast of Filchner station.


1994 ◽  
Vol 20 ◽  
pp. 121-128 ◽  
Author(s):  
W. Graf ◽  
H. Moser ◽  
O. Reinwarth ◽  
J. Kipfstuhl ◽  
H. Oerter ◽  
...  

The accumulation and distribution of the2H content of near-surface layers in the eastern part of the Ronne Ice Shelf were determined from 16 firn cores drilled to about 10 m depth during the Filchner IIIa and IV campaigns in 1990 and 1992, respectively. The cores were dated stratigraphically by seasonal δ2H variations in the firn. In addition,3H and high-resolution chemical profiles were used to assist in dating. Both the accumulation rate and the stable-isotope content decrease with increasing distance from the ice edge: the δ2H values range from about 195‰ at the ice edge to -25‰ at BAS sites 5 and 6, south of Henry Ice Rise, and the accumulation rates from about 210 to 90 kgm-2a-1. The δ2H values of the near-surface firn and the 10 m firn temperatures (Θ) at individual sites are very well correlated: dδ2H/dΘ = (10.3 ± 0.6)‰K-1; r = 0.97.The δ2H profiles of the two ice cores BI3 and BI5 drilled in 1990 and 1992 to 215 and 320 m depth, respectively, reflect the gradual depletion in2H in the firn upstream of the drill sites. Comparison with the surface data indicates that the ice above 142 m in core BIS and above 137 m in core BI3 was deposited on the ice shelf, whereas the deeper ice, down to 152.8 m depth, most probably originated from the margin of the Antarctic ice sheet.


1994 ◽  
Vol 20 ◽  
pp. 121-128 ◽  
Author(s):  
W. Graf ◽  
H. Moser ◽  
O. Reinwarth ◽  
J. Kipfstuhl ◽  
H. Oerter ◽  
...  

The accumulation and distribution of the 2H content of near-surface layers in the eastern part of the Ronne Ice Shelf were determined from 16 firn cores drilled to about 10 m depth during the Filchner IIIa and IV campaigns in 1990 and 1992, respectively. The cores were dated stratigraphically by seasonal δ2H variations in the firn. In addition, 3H and high-resolution chemical profiles were used to assist in dating. Both the accumulation rate and the stable-isotope content decrease with increasing distance from the ice edge: the δ2H values range from about 195‰ at the ice edge to -25‰ at BAS sites 5 and 6, south of Henry Ice Rise, and the accumulation rates from about 210 to 90 kgm-2 a-1. The δ2H values of the near-surface firn and the 10 m firn temperatures (Θ) at individual sites are very well correlated: dδ2H/dΘ = (10.3 ± 0.6)‰K-1; r = 0.97.The δ2H profiles of the two ice cores BI3 and BI5 drilled in 1990 and 1992 to 215 and 320 m depth, respectively, reflect the gradual depletion in 2H in the firn upstream of the drill sites. Comparison with the surface data indicates that the ice above 142 m in core BIS and above 137 m in core BI3 was deposited on the ice shelf, whereas the deeper ice, down to 152.8 m depth, most probably originated from the margin of the Antarctic ice sheet.


2021 ◽  
Author(s):  
Yuzhen Yan ◽  
Nicole E. Spaulding ◽  
Michael L. Bender ◽  
Edward J. Brook ◽  
John A. Higgins ◽  
...  

Abstract. The S27 ice core, drilled in the Allan Hills Blue Ice Area of East Antarctica, is located in Southern Victoria Land ~80 km away from the present-day northern edge of the Ross Ice Shelf. Here, we utilize the reconstructed accumulation rate of S27 covering the Last Interglacial (LIG) period between 129 and 116 thousand years before present (ka) to infer moisture transport into the region. The accumulation rate is based on the ice age-gas age differences calculated from the ice chronology, which is constrained by the stable water isotopes of the ice, and an improved gas chronology based on measurements of oxygen isotopes of O2 in the trapped gases. The peak accumulation rate in S27 occurred at 128.2 ka, near the peak LIG warming in Antarctica. Even the most conservative estimate yields a six-fold increase in the accumulation rate in the LIG, whereas other Antarctic ice cores are typically characterized by a glacial-interglacial difference of a factor of two to three. While part of the increase in S27 accumulation rates must originate from changes in the large-scale atmospheric circulation, additional mechanisms are needed to explain the large changes. We hypothesize that the exceptionally high snow accumulation recorded in S27 reflects open-ocean conditions in the Ross Sea, created by reduced sea ice extent and increased polynya size, and perhaps by a southward retreat of the Ross Ice Shelf relative to its present-day position near the onset of LIG. The proposed ice shelf retreat would also be compatible with a sea-level high stand around 129 ka significantly sourced from West Antarctica. The peak in S27 accumulation rates is transient, suggesting that if the Ross Ice Shelf had indeed retreated during the early LIG, it would have re-advanced by 125 ka.


1993 ◽  
Vol 17 ◽  
pp. 211-218 ◽  
Author(s):  
D.G. Vaughan ◽  
D.R. Mantripp ◽  
J. Sievers ◽  
C.S.M. Doake

Wilkins Ice Shelf has an area of 16000 km2 and lies off the west coast of the Antarctic Peninsula bounded by Alexander, Latady, Charcot and Rothschild islands. Several ice shelves, including Wilkins, exist close to a climatic limit of viability. The recent disintegration of the neighbouring Wordie Ice Shelf has been linked to atmopsheric warming observed on the Antarctic Peninsula. The limit of ice-shelf viability thus appears to have migrated south. Should this continue, the question arises; how long will Wilkins Ice Shelf survive?Compared with the other ice shelves on the Antarctic Peninsula, few surface glaciological data have been collected on Wilkins Ice Shelf. We compare, contrast and combine a variety of remotely sensed data: the recently declassified GEOSAT Geodetic Mission altimetry, Landsat MSS and TM imagery, and radio-echo sounding data (RES), to study its structure and mass balance regime.We find that this shelf has an unusual mass balance regime and relies heavily for sustenance on in situ accumulation. Its response to a continued atmospheric warming may be significantly different from that of Wordie Ice Shelf. Wordie Ice Shelf was fed by several dynamic outlet glaciers which accelerated the disintegration process when the ice shelf fractured. Wilkins Ice Shelf by contrast is almost stagnant and is expected to respond by normal calving at the ice front. Changes in the accumulation rate or basal melt-rate may, however, dominate any dynamic effect. Over the last two decades the ice front positions have remained stable.


1988 ◽  
Vol 11 ◽  
pp. 219
Author(s):  
Shinji Mae

The Japanese Antarctic Research Expedition (JARE) has conducted glaciological studies on Mizuho Plateau since 1981. We have already reported that the ice sheet flowing from Mizuho Plateau into Shirase Glacier is thinning at a rate of about 70 cm/year and that the profile of the distribution of basal shear stress is similar to that of surging glaciers. A 5 year glaciological programme on Mizuho Plateau and in east Queen Maud Land is now being carried out and we have obtained the following new results: (1) The ice sheet in the down-stream region (where ice elevation is lower than about 2400 m) is thinning, based on measurements of horizontal and vertical flow velocity, strain-rate, the slope of the ice surface, the accumulation rate and densification of snow. (2) δ18O analysis of deep ice cores obtained at Mizuho Station (2240 m a.s.l.) and point G2 (1730 m a.s.l.) shows that δ18O increased about 200 years ago at Mizuho Station and about 400 years ago at point G2. If we can assume that the increase in δ18O is caused by the thinning of the ice sheet, then this result means that this thinning propagates to up-stream areas. (3) Radio-echo-sounding measurements on Mizuho Plateau show that the ice base in the down-stream region is wet. This supports the result described in (1), since the basal sliding due to a wet base causes ice-sheet thinning, as proposed in our previous studies. In summary, a possible explanation of ice-sheet variation on Mizuho Plateau is as follows: the thinning of the ice sheet, caused by the basal sliding due to basal ice melting, started at Shirase Glacier and has been propagating up-stream to reach its present position. A simple calculation, using flow velocities, shows that the thinning started at Shirase Glacier about 1500–2000 years ago.


2020 ◽  
Vol 66 (260) ◽  
pp. 1064-1078
Author(s):  
Vikram Goel ◽  
Kenichi Matsuoka ◽  
Cesar Deschamps Berger ◽  
Ian Lee ◽  
Jørgen Dall ◽  
...  

AbstractIce rises and rumples, locally grounded features adjacent to ice shelves, are relatively small yet play significant roles in Antarctic ice dynamics. Their roles generally depend upon their location within the ice shelf and the stage of the ice-sheet retreat or advance. Large, long-stable ice rises can be excellent sites for deep ice coring and paleoclimate study of the Antarctic coast and the Southern Ocean, while small ice rises tend to respond more promptly and can be used to reveal recent changes in regional mass balance. The coasts of Dronning Maud Land (DML) and Enderby Land in East Antarctica are abundant with these features. Here we review existing knowledge, presenting an up-to-date status of research in these regions with focus on ice rises and rumples. We use regional datasets (satellite imagery, surface mass balance and ice thickness) to analyze the extent and surface morphology of ice shelves and characteristic timescales of ice rises. We find that large parts of DML have been changing over the past several millennia. Based on our findings, we highlight ice rises suitable for drilling ice cores for paleoclimate studies as well as ice rises suitable for deciphering ice dynamics and evolution in the region.


1985 ◽  
Vol 6 ◽  
pp. 187-191 ◽  
Author(s):  
Manfred A. Lange ◽  
Heinz Kohnen

We report new data on the position of ice edges in the eastern and southern Weddell Sea for the years 1983 and 1984. The data are derived from ship-borne radar measurements of individual points along the ice edge together with ship’s positions obtained by a satellite navigation system. They are accurate within 0.23 to 0.4 nm (426 - 741 m). Comparisons of ice shelf margins for the years 1980, 1983 and 1984 allow estimates of apparent ice advance rates during this period. Together with quantitative ice edge velocity estimates first conclusions about net changes along the ice front and the ablation along the margin of ice shelves in the eastern and southern Weddell Sea are derived.


1993 ◽  
Vol 17 ◽  
pp. 211-218 ◽  
Author(s):  
D.G. Vaughan ◽  
D.R. Mantripp ◽  
J. Sievers ◽  
C.S.M. Doake

Wilkins Ice Shelf has an area of 16000 km2 and lies off the west coast of the Antarctic Peninsula bounded by Alexander, Latady, Charcot and Rothschild islands. Several ice shelves, including Wilkins, exist close to a climatic limit of viability. The recent disintegration of the neighbouring Wordie Ice Shelf has been linked to atmopsheric warming observed on the Antarctic Peninsula. The limit of ice-shelf viability thus appears to have migrated south. Should this continue, the question arises; how long will Wilkins Ice Shelf survive? Compared with the other ice shelves on the Antarctic Peninsula, few surface glaciological data have been collected on Wilkins Ice Shelf. We compare, contrast and combine a variety of remotely sensed data: the recently declassified GEOSAT Geodetic Mission altimetry, Landsat MSS and TM imagery, and radio-echo sounding data (RES), to study its structure and mass balance regime. We find that this shelf has an unusual mass balance regime and relies heavily for sustenance on in situ accumulation. Its response to a continued atmospheric warming may be significantly different from that of Wordie Ice Shelf. Wordie Ice Shelf was fed by several dynamic outlet glaciers which accelerated the disintegration process when the ice shelf fractured. Wilkins Ice Shelf by contrast is almost stagnant and is expected to respond by normal calving at the ice front. Changes in the accumulation rate or basal melt-rate may, however, dominate any dynamic effect. Over the last two decades the ice front positions have remained stable.


1994 ◽  
Vol 40 (135) ◽  
pp. 399-409 ◽  
Author(s):  
Elisabeth Isaksson ◽  
Wibjörn Karlén

AbstractDuring the Swedish Antarctic Expedition to Dronning Maud Land, Antarctica, 1988–89 the net accumulation was estimated for an area from the coast to about 400 km inland. Stake measurements were used to obtain the spatial variability and firn cores were used for the temporal variability. The mean annual accumulation for the period 1976–88 is about 0.4mw.e. for Riiser-Larsenisen and about 0.3mw.e. for the area above the grounding line. The accumulation rate at higher altitudes, > 2500 m a.s.1., is about 0.1 m w.e. for 1955–88. One record from the ice shelf covers the period 1957–88, and suggests an increase in accumulation of about 12%. Between 1976 and 1988, the accumulation has decreased by about 50%, most likely due to lower temperatures as suggested by the temperature record from Halley.


Sign in / Sign up

Export Citation Format

Share Document