scholarly journals Numerical Models of Steady-State Thickness and Basal Ice Configurations of the Central Ronne Ice Shelf, Antarctica

1988 ◽  
Vol 11 ◽  
pp. 64-70 ◽  
Author(s):  
M. A. Lange ◽  
D. R. MacAyeal

Radar ice-thickness surveys and bore-hole measurements suggest that the central part of Ronne Ice Shelf possesses a lobe-shaped basal layer of undetermined nature (probably saline ice). This layer is characterized by high radio-wave absorbtivity and by thicknesses up to approximately 300 m. We reconstruct this basal layer and the associated ice-shelf thickness and flow distributions, using a time-dependent ice-shelf model forced with prescribed basal freezing rates. Characteristics of the basal layer are controlled by two factors: (i) long ice-column residence times in the unventilated pocket between Henry and Korff ice rises and Doake Ice Rumples, and (ii) basal freezing rates in this pocket that exceed the snow-accumulation rate (currently averaging 0.35 m/a ice equivalent across the ice shelf).

1988 ◽  
Vol 11 ◽  
pp. 64-70 ◽  
Author(s):  
M. A. Lange ◽  
D. R. MacAyeal

Radar ice-thickness surveys and bore-hole measurements suggest that the central part of Ronne Ice Shelf possesses a lobe-shaped basal layer of undetermined nature (probably saline ice). This layer is characterized by high radio-wave absorbtivity and by thicknesses up to approximately 300 m. We reconstruct this basal layer and the associated ice-shelf thickness and flow distributions, using a time-dependent ice-shelf model forced with prescribed basal freezing rates. Characteristics of the basal layer are controlled by two factors: (i) long ice-column residence times in the unventilated pocket between Henry and Korff ice rises and Doake Ice Rumples, and (ii) basal freezing rates in this pocket that exceed the snow-accumulation rate (currently averaging 0.35 m/a ice equivalent across the ice shelf).


1993 ◽  
Vol 39 (132) ◽  
pp. 397-408 ◽  
Author(s):  
G. Delisle

AbstractNumerical models to assess the principal response of large ice caps to climatic changes are used as a guide to the interpretation of field evidence of changes in the glaciological regime in the coastal areas of Victoria Land and north Victoria Land, Antarctica. Based on the theoretical work, the following scenario is proposed: areas within about 300 km from the coast of Victoria Land experienced (i) significantly shallower ice slopes and a lesser degree of glaciation during most of the late Tertiary, (ii) steep slopes and thicker ice than today during glacial stages, and (iii) moderate thinning of the ice in intervening interglacial stages.The model predicts, for central regions of Antarctica, a slightly thinner ice cap (lower snow-accumulation rate) during glacial stages, but an estimated 200 m thicker ice cap in warmer Tertiary climates than today. The calculated “Tertiary ice caps” indicate a probable tendency of periodic surges due to basal melting at the outer fringes.Only modest changes of the ice thickness in reasonably good agreement with the model predictions for the current interglacial stage have been observed on four blue-ice fields, all located within 250 km of the coastline. Investigated ice fields include two meteorite traps — the Allan Hills Icefield and the Frontier Mountain meteorite fields. Antarctic meteorite traps are sustained by very specific glaciological conditions — in particular, only moderate changes in ice thickness over time. The sub-ice topography of these fields was determined by radar measurements and reveals a former, very different glaciological regime, which is interpreted as being associated with glacial processes, operative during the late Tertiary.Field evidence for a hypsithermal event during the Holocene is presented.


1982 ◽  
Vol 3 ◽  
pp. 36-41 ◽  
Author(s):  
W. F. Budd ◽  
M. J. Corry ◽  
T. H. Jacka

The major results from a comprehensive study of the Amery Ice Shelf are presented, following the work of a wintering expedition in 1968 and supplemented by further measurements during the summer seasons of 1969 to 1971. The Programme included ice-core drilling, oversnow surveys for ice movement and optical levelling, ice-thickness sounding, and measurements of snow accumulation. The new data obtained provide the basis for a more accurate assessment of the mass balance and dynamics of the ice shelf than was possible from the earlier surveys. The results indicate a substantial growth of basal ice under the ice shelf inland where the ice thickness is greater than 450 m. Further towards the ice front the high strain thinning is approximately balanced by the horizontal ice advection. The velocity distribution over the ice shelf is primarily governed by a substantial surface slope towards the ice front and high restraining shear stress along the sides.


1982 ◽  
Vol 3 ◽  
pp. 36-41 ◽  
Author(s):  
W. F. Budd ◽  
M. J. Corry ◽  
T. H. Jacka

The major results from a comprehensive study of the Amery Ice Shelf are presented, following the work of a wintering expedition in 1968 and supplemented by further measurements during the summer seasons of 1969 to 1971. The Programme included ice-core drilling, oversnow surveys for ice movement and optical levelling, ice-thickness sounding, and measurements of snow accumulation. The new data obtained provide the basis for a more accurate assessment of the mass balance and dynamics of the ice shelf than was possible from the earlier surveys.The results indicate a substantial growth of basal ice under the ice shelf inland where the ice thickness is greater than 450 m. Further towards the ice front the high strain thinning is approximately balanced by the horizontal ice advection.The velocity distribution over the ice shelf is primarily governed by a substantial surface slope towards the ice front and high restraining shear stress along the sides.


1993 ◽  
Vol 39 (132) ◽  
pp. 397-408 ◽  
Author(s):  
G. Delisle

AbstractNumerical models to assess the principal response of large ice caps to climatic changes are used as a guide to the interpretation of field evidence of changes in the glaciological regime in the coastal areas of Victoria Land and north Victoria Land, Antarctica. Based on the theoretical work, the following scenario is proposed: areas within about 300 km from the coast of Victoria Land experienced (i) significantly shallower ice slopes and a lesser degree of glaciation during most of the late Tertiary, (ii) steep slopes and thicker ice than today during glacial stages, and (iii) moderate thinning of the ice in intervening interglacial stages.The model predicts, for central regions of Antarctica, a slightly thinner ice cap (lower snow-accumulation rate) during glacial stages, but an estimated 200 m thicker ice cap in warmer Tertiary climates than today. The calculated “Tertiary ice caps” indicate a probable tendency of periodic surges due to basal melting at the outer fringes.Only modest changes of the ice thickness in reasonably good agreement with the model predictions for the current interglacial stage have been observed on four blue-ice fields, all located within 250 km of the coastline. Investigated ice fields include two meteorite traps — the Allan Hills Icefield and the Frontier Mountain meteorite fields. Antarctic meteorite traps are sustained by very specific glaciological conditions — in particular, only moderate changes in ice thickness over time. The sub-ice topography of these fields was determined by radar measurements and reveals a former, very different glaciological regime, which is interpreted as being associated with glacial processes, operative during the late Tertiary.Field evidence for a hypsithermal event during the Holocene is presented.


1989 ◽  
Vol 35 (121) ◽  
pp. 406-417 ◽  
Author(s):  
Niels Reeh

AbstractSimple analytical models are developed in order to study how up-stream variations in accumulation rate and ice thickness, and horizontal convergence/ divergence of the flow influence the age and annual layer-thickness profiles in a steady-state ice sheet. Generally, a decrease/increase of the accumulation rate and an increase/decrease of the ice thickness in the up-stream direction (i.e. opposite to the flow direction) results in older/younger ice at a given depth in the ice sheet than would result if the up-stream accumulation rate and ice thickness were constant along the flow line.Convergence/divergence of the up-stream flow will decrease/increase the effect of the accumulation-rate and ice-thickness gradients, whereas convergence/divergence has no influence at all on the age and layer-thickness profiles if the up-stream accumulation rate and ice thickness are constant along the flow line.A modified column-flow model, i.e. a model for which the strain-rate profile (or, equivalently, the horizontal velocity profile) is constant down to the depth corresponding to the Holocene/Wisconsinan transition 10 750 year BP., seems to work well for dating the ice back to 10 000–11 000 year B P. at sites in the slope regions of the Greenland ice sheet. For example, the model predicts the experimentally determined age profile at Dye 3 on the south Greenland ice sheet with a relative root-mean-square error of only 3% back to c. 10 700 year B.P. As illustrated by the Milcent location on the western slope of the central Greenland ice sheet, neglecting up-stream accumulation-rate and ice-thickness gradients, may lead to dating errors as large as 3000–000 years for c. 10 000 year old ice.However, even if these gradients are taken into account, the simple model fails to give acceptable ages for 10 000 year old ice at locations on slightly sloping ice ridges with strongly divergent flow, as for example the Camp Century location. The main reason for this failure is that the site of origin of the ice cannot be determined accurately enough by the simple models, if the flow is strongly divergent.With this exception, the simple models are well suited for dating the ice at locations where the available data or the required accuracy do not justify application of elaborate numerical models. The formulae derived for the age-depth profiles can easily be worked out on a pocket calculator, and in many cases will be a sensible alternative to using numerical flow models.


2021 ◽  
Author(s):  
Yuzhen Yan ◽  
Nicole E. Spaulding ◽  
Michael L. Bender ◽  
Edward J. Brook ◽  
John A. Higgins ◽  
...  

Abstract. The S27 ice core, drilled in the Allan Hills Blue Ice Area of East Antarctica, is located in Southern Victoria Land ~80 km away from the present-day northern edge of the Ross Ice Shelf. Here, we utilize the reconstructed accumulation rate of S27 covering the Last Interglacial (LIG) period between 129 and 116 thousand years before present (ka) to infer moisture transport into the region. The accumulation rate is based on the ice age-gas age differences calculated from the ice chronology, which is constrained by the stable water isotopes of the ice, and an improved gas chronology based on measurements of oxygen isotopes of O2 in the trapped gases. The peak accumulation rate in S27 occurred at 128.2 ka, near the peak LIG warming in Antarctica. Even the most conservative estimate yields a six-fold increase in the accumulation rate in the LIG, whereas other Antarctic ice cores are typically characterized by a glacial-interglacial difference of a factor of two to three. While part of the increase in S27 accumulation rates must originate from changes in the large-scale atmospheric circulation, additional mechanisms are needed to explain the large changes. We hypothesize that the exceptionally high snow accumulation recorded in S27 reflects open-ocean conditions in the Ross Sea, created by reduced sea ice extent and increased polynya size, and perhaps by a southward retreat of the Ross Ice Shelf relative to its present-day position near the onset of LIG. The proposed ice shelf retreat would also be compatible with a sea-level high stand around 129 ka significantly sourced from West Antarctica. The peak in S27 accumulation rates is transient, suggesting that if the Ross Ice Shelf had indeed retreated during the early LIG, it would have re-advanced by 125 ka.


2021 ◽  
Author(s):  
Jan De Rydt ◽  
Ronja Reese ◽  
Fernando Paolo ◽  
G Hilmar Gudmundsson

<p>Pine Island Glacier in West Antarctica is among the fastest changing glaciers worldwide. Much of its fast-flowing central trunk is thinning and accelerating, a process thought to have been triggered by ocean-induced changes in ice-shelf buttressing. The measured acceleration in response to perturbations in ice thickness is a non-trivial manifestation of several poorly-understood physical processes, including the transmission of stresses between the ice and underlying bed. To enable robust projections of future ice flow, it is imperative that numerical models include an accurate representation of these processes. Here we combine the latest data with analytical and numerical solutions of SSA ice flow to show that the recent increase in flow speed of Pine Island Glacier is only compatible with observed patterns of thinning if a spatially distributed, predominantly plastic bed underlies large parts of the central glacier and its upstream tributaries.</p>


1983 ◽  
Vol 4 ◽  
pp. 47-51
Author(s):  
Rudolf Dörr ◽  
Hans L. Jessberger

The time-dependent vertical deformation and the variation of the cross-section of the Georg von Neumayer wintering station, built during the Antarctic summer of 1980-81, are investigated with regard to the rheological behaviour of the surrounding snow, firn, and ice. Computations are performed to determine the time-dependent settlement using the compactive ( compressée) viscosity nc as the viscoelastic parameter, being a function of the density, nc is derived from the depth-density curve down to to 73.6 m depth, the initial density p0, and the accumulation rate. The ground plan and the foundation pressures of the station, and the weight of snow-fill and accumulation, are employed in the analysis, using actual values.These computations are compared with measurements for a period of 320 d. The described measurement systems include the possibility of finding a reference level in the continuously compressed ice shelf. The time-dependent deformation of experimental tubes is also presented on the basis of convergency data taken over a period of 480 d.


Sign in / Sign up

Export Citation Format

Share Document