scholarly journals On the potential use of glacier and permafrost observations for verification of climate models

1997 ◽  
Vol 25 ◽  
pp. 400-406 ◽  
Author(s):  
Martin Beniston ◽  
Wilfried Haeberli ◽  
Martin Hoelzle ◽  
Alan Taylor

While the capability of global and regional climate models in reproducing current climate has significantly improved over the past few years, the confidence in model results for remote regions, or those where complex orography is a dominant feature, is still relatively low. This is, in part, linked to the lack of observational data for model verification and intercomparison purposes.Glacier and permafrost observations are directly related to past and present energy flux patterns at the Earth-atmosphere interface and could be used as a proxy for air temperature and precipitation, particularly of value in remote mountain regions and boreal and Arctic zones where instrumental climate records are sparse or non-existent. It is particularly important to verify climate-model performance in these regions, as this is where most general circulation models (GCMs) predict the greatest changes in air temperatures in a warmer global climate.Existing datasets from glacier and permafrost monitoring sites in remote and high altitudes are described in this paper; the data could be used in model-verification studies, as a means to improving model performance in these regions.

1997 ◽  
Vol 25 ◽  
pp. 400-406 ◽  
Author(s):  
Martin Beniston ◽  
Wilfried Haeberli ◽  
Martin Hoelzle ◽  
Alan Taylor

While the capability of global and regional climate models in reproducing current climate has significantly improved over the past few years, the confidence in model results for remote regions, or those where complex orography is a dominant feature, is still relatively low. This is, in part, linked to the lack of observational data for model verification and intercomparison purposes.Glacier and permafrost observations are directly related to past and present energy flux patterns at the Earth-atmosphere interface and could be used as a proxy for air temperature and precipitation, particularly of value in remote mountain regions and boreal and Arctic zones where instrumental climate records are sparse or non-existent. It is particularly important to verify climate-model performance in these regions, as this is where most general circulation models (GCMs) predict the greatest changes in air temperatures in a warmer global climate.Existing datasets from glacier and permafrost monitoring sites in remote and high altitudes are described in this paper; the data could be used in model-verification studies, as a means to improving model performance in these regions.


2010 ◽  
Vol 49 (10) ◽  
pp. 2147-2158 ◽  
Author(s):  
Peter Caldwell

Abstract In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California and compared. Several averaging methodologies are considered and all are found to give similar values when the model grid spacing is less than 3°. This suggests that California is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict California precipitation. This appears to be due mainly to the overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge–satellite observations, which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait that does not seem to be tied to model resolution. The GCM daily and interannual variabilities are generally underpredicted.


2016 ◽  
Vol 66 (1) ◽  
pp. 32
Author(s):  
Philbert Luhunga ◽  
Joel Botai ◽  
Frederick Kahimba

Regional climate models (RCMs) are widely used in regional assessment of climate change impacts. However, the reliability of individual models needs to be assessed before using their output for impact assessment. In this study, we evaluate the performance of RCMs from the Coordinated Regional Climate Downscaling Experiment program (CORDEX) to simulate minimum air temperature (TN), maximum air temperature (TX) and rainfall over Tanzania. Output from four RCMs driven by boundary conditions from three General Circulation Models (GCMs) and ERA-Interim data are evaluated against observed data from 22 weather stations. The evaluation is based on determining how well the RCMs reproduce climatological trends, interannual, and annual cycles of TN, TX and rainfall. Statistical measures of model performance that include the bias, root mean square error, correlation and trend analysis are used. It is found that RCMs capture the annual cycle of TN, TX and rainfall well, however underestimate and overestimate the amount of rainfall in March–April–May (MAM) and October–November–December (OND) seasons respectively. Most RCMs reproduce interannual variations of TN, TX and rainfall. The source of uncertainties can be analysed when the same RCM is driven by different GCMs and different RCMs driven by same GCM simulate TN, TX and rainfall differently. It is found that the biases and errors from the RCMs and driving GCMs contribute roughly equally. Overall, the evaluation finds reasonable (although variable) model skill in representing mean climate, interannual variability and temperature trends, suggesting the potential use of CORDEX RCMs in simulating TN, TX and rainfall over Tanzania.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1032 ◽  
Author(s):  
Ariel Wang ◽  
Francina Dominguez ◽  
Arthur Schmidt

In this paper, extreme precipitation spatial analog is examined as an alternative method to adapt extreme precipitation projections for use in urban hydrological studies. The idea for this method is that real climate records from some cities can serve as “analogs” that behave like potential future precipitation for other locations at small spatio-temporal scales. Extreme precipitation frequency quantiles of a 3.16 km 2 catchment in the Chicago area, computed using simulations from North American Regional Climate Change Assessment Program (NARCCAP) Regional Climate Models (RCMs) with L-moment method, were compared to National Oceanic and Atmospheric Administration (NOAA) Atlas 14 (NA14) quantiles at other cities. Variances in raw NARCCAP historical quantiles from different combinations of RCMs, General Circulation Models (GCMs), and remapping methods are much larger than those in NA14. The performance for NARCCAP quantiles tend to depend more on the RCMs than the GCMs, especially at durations less than 24-h. The uncertainties in bias-corrected future quantiles of NARCCAP are still large compared to those of NA14, and increase with rainfall duration. Results show that future 3-h and 30-day rainfall in Chicago will be similar to historical rainfall from Memphis, TN and Springfield, IL, respectively. This indicates that the spatial analog is potentially useful, but highlights the fact that the analogs may depend on the duration of the rainfall of interest.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
Carlos Garijo ◽  
Luis Mediero

Climate model projections can be used to assess the expected behaviour of extreme precipitations in the future due to climate change. The European part of the Coordinated Regional Climate Downscalling Experiment (EURO-CORDEX) provides precipitation projections for the future under various representative concentration pathways (RCPs) through regionalised Global Climate Model (GCM) outputs by a set of Regional Climate Models (RCMs). In this work, 12 combinations of GCM and RCM under two scenarios (RCP 4.5 and RCP 8.5) supplied by the EURO-CORDEX are analysed for the Iberian Peninsula. Precipitation quantiles for a set of probabilities of non-exceedance are estimated by using the Generalized Extreme Value (GEV) distribution and L-moments. Precipitation quantiles expected in the future are compared with the precipitation quantiles in the control period for each climate model. An approach based on Monte Carlo simulations is developed in order to assess the uncertainty from the climate model projections. Expected changes in the future are compared with the sampling uncertainty in the control period. Thus, statistically significant changes are identified. The higher the significance threshold, the fewer cells with significant changes are identified. Consequently, a set of maps are obtained in order to assist the decision-making process in subsequent climate change studies.


2021 ◽  
Author(s):  
Thibault Lemaitre-Basset ◽  
Ludovic Oudin ◽  
Guillaume Thirel ◽  
Lila Collet

Abstract. The increasing air temperature in a changing climate will impact actual evaporation and have consequences for water resources management in energy-limited regions. In many hydrological models, evaporation is assessed by a preliminary computation of potential evaporation (PE) representing the evaporative demand of the atmosphere. Therefore, in impact studies the quantification of uncertainties related to PE estimation, which can arise from different sources, is crucial. Indeed, a myriad of PE formulations exist and the uncertainties related to climate variables cascade into PE computation. So far, no consensus has emerged on the main source of uncertainty in the PE modelling chain for hydrological studies. In this study, we address this issue by setting up a multi-model and multi-scenario approach. We used seven different PE formulations and a set of 30 climate projections to calculate changes in PE. To estimate the uncertainties related to each step of the PE calculation process (namely Representative Concentration Pathways, General Circulation Models, Regional Climate Models and PE formulations), an analysis of variance decomposition (ANOVA) was used. Results show that PE would increase across France by the end of the century, from +40 to +130 mm/year. In ascending order, uncertainty contributions by the end of the century are explained by: PE formulations (below 10 %), then RCPs (above 20 %), RCMs (30–40 %) and GCMs (30–40 %). Finally, all PE formulations show similar future trends since climatic variables are co-dependent to temperature. While no PE formulation stands out from the others, in hydrological impact studies the Penman-Monteith formulation may be preferred as it is representative of the PE formulations ensemble mean and allows accounting for climate and environmental drivers co-evolution.


Author(s):  
Amina Mami ◽  
Djilali Yebdri ◽  
Sabine Sauvage ◽  
Mélanie Raimonet ◽  
José Miguel

Abstract Climate change is expected to increase in the future in the Mediterranean region, including Algeria. The Tafna basin, vulnerable to drought, is one of the most important catchments ensuring water self-sufficiency in northwestern Algeria. The objective of this study is to estimate the evolution of hydrological components of the Tafna basin, throughout 2020–2099, comparing to the period 1981–2000. The SWAT model (Soil and Water Assessment Tool), calibrated and validated on the Tafna basin with good Nash at the outlet 0.82, is applied to analyze the spatial and temporal evolution of hydrological components, over the basin throughout 2020–2099. The application is produced using a precipitation and temperature minimum/maximum of an ensemble of climate model outputs obtained from a combination of eight global climate models and two regional climate models of Coordinated Regional Climate Downscaling Experiment project. The results of this study show that the decrease of precipitation in January, on average −25%, ranged between −5% and −44% in the future. This diminution affects all of the water components and fluxes of a watershed, namely, in descending order of impact: the river discharge causing a decrease −36%, the soil water available −31%, the evapotranspiration −30%, and the lateral flow −29%.


2017 ◽  
Author(s):  
Kristina Seftigen ◽  
Hugues Goosse ◽  
Francois Klein ◽  
Deliang Chen

Abstract. The integration of climate proxy information with General Circulation Model (GCM) results offers considerable potential for deriving greater understanding of the mechanisms underlying climate variability, as well as unique opportunities for out-of-sample evaluations of model performance. In this study, we combine insights from a new tree-ring hydroclimate reconstruction from Scandinavian with projections from a suite of forced transient simulations of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of atmospheric variability that produces droughts/pluvials in the region. But despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate time series remain. We find simulated interannual components of variability to be overestimated, while the multidecadal/longer timescale components generally are too weak. Specifically, summertime moisture variability and temperature are weakly negatively associated at inter-annual timescales but positively correlated at decadal timescales, revealed from observational and proxy evidences. On this background, the CMIP5/PMIP3 simulated timescale dependent relationship between regional precipitation and temperature is considerably biased, because the short-term negative association is overestimated, and the long-term relationship is significantly underestimated. The lack of adequate understanding for mechanisms linking temperature and moisture supply on longer timescales has important implication for future projections. Weak multidecadal variability in models also implies that inference about future persistent droughts and pluvials based on the latest generation global climate models will likely underestimate the true risk of these events.


Sign in / Sign up

Export Citation Format

Share Document