scholarly journals Line spectroscopy with spatial resolution of laser–plasma X-ray emission

2001 ◽  
Vol 19 (1) ◽  
pp. 117-123 ◽  
Author(s):  
L. LABATE ◽  
M. GALIMBERTI ◽  
A. GIULIETTI ◽  
D. GIULIETTI ◽  
L.A. GIZZI ◽  
...  

High dynamic range, space-resolved X-ray spectra of an aluminum laser–plasma in the 5.5–8 Å range were obtained using a TlAP crystal and a cooled CCD camera as a detector. This technique was used to investigate the emission region in the longitudinal direction over a distance of approximately 350 μm from the solid target surface. These data show that the electron density profile varies by two orders of magnitude with the temperature ranging from about 180 eV in the overdense region to about 650 eV in the underdense region. Accordingly, different equilibria take place across the explored region which can be identified with this experimental technique. Detailed studies on highly ionized atomic species in different plasma conditions can therefore be performed simultaneously under controlled conditions.

2002 ◽  
Vol 20 (2) ◽  
pp. 223-226 ◽  
Author(s):  
L. LABATE ◽  
M. GALIMBERTI ◽  
A. GIULIETTI ◽  
D. GIULIETTI ◽  
L.A. GIZZI ◽  
...  

High dynamic range, space-resolved X-ray spectra, obtained using a TlAP crystal and a cooled CCD camera as a detector, were used to investigate the electron density and temperature profiles of an aluminum laser plasma with micrometer resolution. The electron density profile retrieved from the measurements is compared with numerical predictions from the two hydrodynamics codes MEDUSA (1D) and POLLUX (2D). It is shown that 2D density profiles can be successfully reproduced by 1D simulations using a spherical geometry with an ad hoc initial radius, leading to similar electron temperature profiles.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1125-1126
Author(s):  
S.J. Pan ◽  
A. Shih ◽  
W.S. Liou ◽  
M.S. Park ◽  
G. Wang ◽  
...  

An experimental X-ray cone-beam microtomographic imaging system utilizing a generalized Feldkamp reconstruction algorithm has been developed in our laboratory. This microtomographic imaging system consists of a conventional dental X-ray source (Aztech 65, Boulder, CO), a sample position and rotation stage, an X-ray scintillation phosphor screen, and a high resolution slow scan cooled CCD camera (Kodak KAF 1400). A generalized Feldkamp cone-beam algorithm was used to perform tomographic reconstruction from cone-beam projection data. This algorithm was developed for various hardware configuration to perform reconstruction of spherical, rod-shaped and plate-like specimen.A test sample consists of 8 glass beads (approx. 800μm in diameter) dispersed in an epoxy-filled #0 gelatin capsule. One hundred X-ray projection images were captured equal angularly (at 3.6 degree spacing) by the cooled CCD camera at a of 1317×967 (17×17mm2) pixels with 12-bit dynamic range. Figure 1 shows a 3D isosurface rendering of the test sample. The eight glass beads and trapped air bubbles (arrows) in the epoxy resin (e) are clearly visible.


1991 ◽  
Vol 9 (2) ◽  
pp. 579-591 ◽  
Author(s):  
L. Pína ◽  
H. Fiedorowicz ◽  
M. O. Koshevoi ◽  
A. A. Rupasov ◽  
B. Rus ◽  
...  

A program is under way to develop methods and instrumentation based on charge-coupled device (CCD) sensors for hot plasma diagnostics. We have developed a new X-ray spectrometer in which a freestanding X-ray transmission grating is coupled to a CCD linear array detector with electronic digitized readout replacing film and its wet processing. This instrument measures time-integrated pulsed X-ray spectra with moderate spectral resolution (δλ ≤ 0.6 nm) over a broad spectral range (0.3–2 keV) with high sensitivity, linearity, and large dynamic range. The performance of the device was tested using laser plasma as the X-ray source.


2016 ◽  
Vol 49 (5) ◽  
pp. 1428-1432 ◽  
Author(s):  
Na Li ◽  
Xiuhong Li ◽  
Yuzhu Wang ◽  
Guangfeng Liu ◽  
Ping Zhou ◽  
...  

The beamline BL19U2 is located in the Shanghai Synchrotron Radiation Facility (SSRF) and is its first beamline dedicated to biological material small-angle X-ray scattering (BioSAXS). The electrons come from an undulator which can provide high brilliance for the BL19U2 end stations. A double flat silicon crystal (111) monochromator is used in BL19U2, with a tunable monochromatic photon energy ranging from 7 to 15 keV. To meet the rapidly growing demands of crystallographers, biochemists and structural biologists, the BioSAXS beamline allows manual and automatic sample loading/unloading. A Pilatus 1M detector (Dectris) is employed for data collection, characterized by a high dynamic range and a short readout time. The highly automated data processing pipeline SASFLOW was integrated into BL19U2, with help from the BioSAXS group of the European Molecular Biology Laboratory (EMBL, Hamburg), which provides a user-friendly interface for data processing. The BL19U2 beamline was officially opened to users in March 2015. To date, feedback from users has been positive and the number of experimental proposals at BL19U2 is increasing. A description of the new BioSAXS beamline and the setup characteristics is given, together with examples of data obtained.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Madalena S. Kozachuk ◽  
Tsun-Kong Sham ◽  
Ronald R. Martin ◽  
Andrew J. Nelson ◽  
Ian Coulthard ◽  
...  

Author(s):  
Arundhuti Ganguly ◽  
Pieter G. Roos ◽  
Tom Simak ◽  
J. Michael Yu ◽  
Steven Freestone ◽  
...  

1998 ◽  
Vol 45 (3) ◽  
pp. 724-727 ◽  
Author(s):  
A. Kaluza ◽  
T. Ohms ◽  
C. Rente ◽  
R. Engels ◽  
R. Reinartz ◽  
...  

2015 ◽  
Vol 22 (5) ◽  
pp. 1202-1206 ◽  
Author(s):  
Bernhard W. Adams ◽  
Anil U. Mane ◽  
Jeffrey W. Elam ◽  
Razib Obaid ◽  
Matthew Wetstein ◽  
...  

X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 107events per cm2. Time-gating can be used for improved dynamic range.


Sign in / Sign up

Export Citation Format

Share Document