Singularity analysis of a 3-DOF parallel manipulator with R-P-S joint structure

Robotica ◽  
2005 ◽  
Vol 24 (1) ◽  
pp. 131-142 ◽  
Author(s):  
Alexei Sokolov ◽  
Paul Xirouchakis

This paper presents a singularity analysis for a 3-DOF parallel manipulator with R-P-S (Revolute-Prismatic-Spherical) joint structure. All three types of singularities are investigated with most attention paid for direct kinematics singularities (DKS). The loci of inverse kinematics and combined singularities are identified using a new approach. The equation of DKS is defined first from the condition of existence of an instantaneous motion. The geometrical method is used to find the loci of trajectories corresponding to DKS-s. As a result of these investigations, an optimization procedure was proposed of a robot design in order to have an enlarged singularity free part of the working space. The construction of a singularity free path is discussed without changing the robot trajectory by selecting the appropriate inverse kinematics task solution.

Robotica ◽  
2009 ◽  
Vol 27 (6) ◽  
pp. 929-940 ◽  
Author(s):  
Jianguo Zhao ◽  
Bing Li ◽  
Xiaojun Yang ◽  
Hongjian Yu

SUMMARYScrew theory has demonstrated its wide applications in robot kinematics and statics. We aim to propose an intuitive geometrical approach to obtain the reciprocal screws for a given screw system. Compared with the traditional Plücker coordinate method, the new approach is free from algebraic manipulation and can be used to obtain the reciprocal screws just by inspecting the structure of manipulator. The approach is based on three observations that describe the geometrical relation for zero pitch screw and infinite pitch screw. Based on the observations, the reciprocal screw systems of several common kinematic elements are analyzed, including usual kinematic pairs and chains. We also demonstrate usefulness of the geometrical approach by a variety of applications in mobility analysis, Jacobian formulation, and singularity analysis for parallel manipulator. This new approach can facilitate the parallel manipulator design process and provide sufficient insights for existing manipulators.


2013 ◽  
Vol 441 ◽  
pp. 568-571
Author(s):  
Jian Hui Fan ◽  
Bin Li ◽  
Xin Hua Zhao

In this paper, kinematics and singularity of a 2-RPU&SPR parallel mechanism are analyzed by algebraic method. Firstly, the inverse kinematics of the parallel mechanism is derived. Secondly, the Jacobian matrix of the parallel mechanism is obtained and the singularity of the mechanism is analyzed. Finally, the correctness of singularity analysis of the mechanism is verified by numerical simulations.


2012 ◽  
Vol 4 (4) ◽  
Author(s):  
Xin-Jun Liu ◽  
Chao Wu ◽  
Jinsong Wang

Singularity analysis is one of the most important issues in the field of parallel manipulators. An approach for singularity analysis should be able to not only identify all possible singularities but also explain their physical meanings. Since a parallel manipulator is always out of control at a singularity and its neighborhood, it should work far from singular configurations. However, how to measure the closeness between a pose and a singular configuration is still a challenging problem. This paper presents a new approach for singularity analysis of parallel manipulators by taking into account motion/force transmissibility. Several performance indices are introduced to measure the closeness to singularities. By using these indices, a uniform “metric” can be found to represent the closeness to singularities for different types of nonredundant parallel manipulators.


2011 ◽  
Vol 403-408 ◽  
pp. 5015-5021 ◽  
Author(s):  
A. Arockia Selvakumar ◽  
K. Karthik ◽  
A.L. Naresh Kumar ◽  
R. Sivaramakrishnan ◽  
K. Kalaichelvan

Three degrees of freedom (DOF) parallel manipulator is used in the applications such as base for various machining operations, drilling inclined holes, airplane and automobile simulators, walking machines, pointing devices, contour milling and machining etc. The 3 DOF parallel manipulator consists of a fixed platform and a movable platform, which are connected by means of three identical links. Pin joints are used to connect the one end of the link and the lead screw pair. This 3 DOF 1R2T parallel manipulator is having one orientation freedom and two translational freedom, which is actuated by means of screw pair, which in turn operated by a stepper motor. The inverse kinematics and velocity equations of this mechanism have been derived mathematically. Based on this inverse kinematics and velocity equations singularity analysis is completed. Two kinds of singularities are compared with ADAMS simulation results and a prototype of the manipulator is developed for further study.


Author(s):  
Andrew P. Sabelhaus ◽  
Hao Ji ◽  
Patrick Hylton ◽  
Yakshu Madaan ◽  
ChanWoo Yang ◽  
...  

The Underactuated Lightweight Tensegrity Robotic Assistive Spine (ULTRA Spine) project is an ongoing effort to create a compliant, cable-driven, 3-degree-of-freedom, underactuated tensegrity core for quadruped robots. This work presents simulations and preliminary mechanism designs of that robot. Design goals and the iterative design process for an ULTRA Spine prototype are discussed. Inverse kinematics simulations are used to develop engineering characteristics for the robot, and forward kinematics simulations are used to verify these parameters. Then, multiple novel mechanism designs are presented that address challenges for this structure, in the context of design for prototyping and assembly. These include the spine robot’s multiple-gear-ratio actuators, spine link structure, spine link assembly locks, and the multiple-spring cable compliance system.


2010 ◽  
Vol 44-47 ◽  
pp. 1375-1379
Author(s):  
Da Chang Zhu ◽  
Li Meng ◽  
Tao Jiang

Parallel manipulators has been extensively studied by virtues or its high force-to-weight ratio and widely spread applications such as vehicle or flight simulator, a machine tool and the end effector of robot system. However, as each limb includes several rigid joints, assembling error is demanded strictly, especially in precision measurement and micro-electronics. On the other hand, compliant mechanisms take advantage of recoverable deformation to transfer or transform motion, force, or energy and the benefits of compliant mechanisms mainly come from the elimination of traditional rigid joints, but the traditional displacement method reduce the stiffness of spatial compliant parallel manipulators. In this paper, a new approach of structure synthesis of 3-DoF rotational compliant parallel manipulators is proposed. Based on screw theory, the structures of RRS type 3-DoF rotational spatial compliant parallel manipulator are developed. Experiments via ANSYS are conducted to give some validation of the theoretical analysis.


2006 ◽  
Vol 129 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Farhad Tahmasebi

Closed-form direct and inverse kinematics of a new three-degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three-DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base mounted, higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of the tangent of the half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.


2013 ◽  
Vol 325-326 ◽  
pp. 1014-1018
Author(s):  
Hai Rong Fang ◽  
Zhi Hong Chen ◽  
Yue Fa Fang

In this paper, a novel 3-degree-of-freedom (DOF) parallel manipulator that can perform three rotations around the remote centre is presented. The theory of screws and reciprocal screws is employed for the analysis of the geometric conditions. In particular, using circular guide to instead of R joints, so that has the advantage of enabling continuous 360° revolute around Z-axis. The inverse kinematics of mechanism is given and the workspace has a good performance. To compare with the machine constructed with traditional joints, it has the advantage of high rigidity and precision.


2012 ◽  
Vol 6 (2) ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

A crucial design challenge in minimally invasive surgical (MIS) robots is the provision of a fully decoupled four degrees-of-freedom (4-DOF) remote center-of-motion (RCM) for surgical instruments. In this paper, we present a new parallel manipulator that can generate a 4-DOF RCM over its end-effector and these four DOFs are fully decoupled, i.e., each of them can be independently controlled by one corresponding actuated joint. First, we revisit the remote center-of-motion for MIS robots and introduce a projective displacement representation for coping with this special kinematics. Next, we present the proposed new parallel manipulator structure and study its geometry and motion decouplebility. Accordingly, we solve the inverse kinematics problem by taking the advantage of motion decouplebility. Then, via the screw system approach, we carry out the Jacobian analysis for the manipulator, by which the singular configurations are identified. Finally, we analyze the reachable and collision-free workspaces of the proposed manipulator and conclude the feasibility of this manipulator for the application in minimally invasive surgery.


2008 ◽  
Vol 1 (1) ◽  
Author(s):  
Gim Song Soh ◽  
J. Michael McCarthy

This paper presents a procedure that determines the dimensions of two constraining links to be added to a three degree-of-freedom spherical parallel manipulator so that it becomes a one degree-of-freedom spherical (8, 10) eight-bar linkage that guides its end-effector through five task poses. The dimensions of the spherical parallel manipulator are unconstrained, which provides the freedom to specify arbitrary base attachment points as well as the opportunity to shape the overall movement of the linkage. Inverse kinematics analysis of the spherical parallel manipulator provides a set of relative poses between all of the links, which are used to formulate the synthesis equations for spherical RR chains connecting any two of these links. The analysis of the resulting spherical eight-bar linkage verifies the movement of the system.


Sign in / Sign up

Export Citation Format

Share Document