Single-legged hopping robotics research—A review

Robotica ◽  
2007 ◽  
Vol 25 (5) ◽  
pp. 587-613 ◽  
Author(s):  
Ajij Sayyad ◽  
B. Seth ◽  
P. Seshu

SUMMARYInspired by the agility of animal and human locomotion, the number of researchers studying and developing legged robots has been increasing at a rapid rate over the last few decades. In comparison to multilegged robots, single-legged robots have only one type of locomotion gait, i.e., hopping, which represents a highly nonlinear dynamical behavior consisting of alternating flight and stance phases. Hopping motion has to be dynamically stabilized and presents challenging control problems. A large fraction of studies on legged robots has focused on modeling and control of single-legged hopping machines. In this paper, we present a comprehensive review of developments in the field of single-legged hopping robots. We have attempted to cover development of prototype models as well as theoretical models of such hopping systems.

2016 ◽  
pp. 1203-1234 ◽  
Author(s):  
Pierre-Brice Wieber ◽  
Russ Tedrake ◽  
Scott Kuindersma

1988 ◽  
Vol 110 (3) ◽  
pp. 266-271 ◽  
Author(s):  
Kamal A. F. Moustafa ◽  
A. M. Ebeid

In this paper, we derive a nonlinear dynamical model for an overhead crane. The model takes into account simultaneous travel and transverse motions of the crane. The aim is to transport an object along a specified transport route in such a way that the swing angles are suppressed as quickly as possible. We develop an antiswing control system which adopts a feedback control to specify the crane speed at every moment. The gain matrix is chosen such that a desired rate of decay of the swing angles is obtained. The model and control scheme are simulated on a digital computer and the results prove that the feedback control works well.


2021 ◽  
Author(s):  
Ahmad Kourani ◽  
Naseem Daher

Abstract This work presents the nonlinear dynamical model and motion controller of a system consisting of an unmanned aerial vehicle (UAV) that is tethered to a floating buoy in the three-dimensional (3D) space. Detailed models of the UAV, buoy, and the coupled tethered system dynamics are presented in a marine environment that includes surface-water currents and oscillating gravity waves, in addition to wind gusts. This work extends the previously modeled planar (vertical) motion of this novel robotic system to allow its free motion in all three dimensions. Furthermore, a Directional Surge Velocity Control System (DSVCS) is hereby proposed to allow both the free movement of the UAV around the buoy when the cable is slack, and the manipulation of the buoy’s surge velocity when the cable is taut. Using a spherical coordinate system centered at the buoy, the control system commands the UAV to apply forces on the buoy at specific azimuth and elevation angles via the tether, which yields a more appropriate realization of the control problem as compared to the Cartesian coordinates where the traditional x- , y- , and z -coordinates do not intuitively describe the tether’s tension and orientation. The proposed robotic system and controller offer a new method of interaction and collaboration between UAVs and marine systems from a locomotion perspective. The system is validated in a virtual high-fidelity simulation environment, which was specifically developed for this purpose, while considering various settings and wave scenarios.


Author(s):  
Witoon Panusittikorn ◽  
Paul I. Ro

A magnetostrictive actuator offers a long mechanical strain output in a broad bandwidth at a cost of a highly nonlinear magnetic hysteresis. Full utilization of this actuator in precision manufacturing requires a feedback loop as well as an advanced control scheme. A robust control scheme using sliding mode control with a variable switching gain was tailored to the nonlinear transducer. Nominal feedforward current controller that drives the magnetostriction was based on the inverse anhysteresis model. An additional switching gain based on the Lyapunov stability condition is implemented to restrain uncertainties. Compared to a traditional closed-loop control design, the proposed algorithm experimentally showed a greatly enhanced performance.


2015 ◽  
Vol 25 (3) ◽  
pp. 377-396
Author(s):  
N. Sozhamadevi ◽  
S. Sathiyamoorthy

Abstract A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.


2000 ◽  
Vol 123 (1) ◽  
pp. 2-10 ◽  
Author(s):  
H. R. Pota ◽  
A. G. Kelkar

This paper presents closed-form mathematical models for an acoustic duct with general boundary conditions. These infinite-dimensional models are derived using symbolic computations. A new method to obtain finite dimensional approximations of infinite-dimensional models using quartic functions is presented. The theoretical models are compared with the experimental data obtained for the KSU duct. The experimental results of a new robust broadband feedback controller, designed using passivity-based techniques, are presented. The controller design is shown to be robust to the unmodeled dynamics and parametric uncertainty.


Robotica ◽  
2011 ◽  
Vol 30 (4) ◽  
pp. 671-680 ◽  
Author(s):  
Erkan Kayacan ◽  
Zeki Y. Bayraktaroglu ◽  
Wouter Saeys

SUMMARYThis paper presents the results of a study on the dynamical modeling, analysis, and control of a spherical rolling robot. The rolling mechanism consists of a 2-DOF pendulum located inside a spherical shell with freedom to rotate about the transverse and longitudinal axis. The kinematics of the model has been investigated through the classical methods with rotation matrices. Dynamic modeling of the system is based on the Euler–Lagrange formalism. Nonholonomic and highly nonlinear equations of motion have then been decomposed into two simpler subsystems through the decoupled dynamics approach. A feedback linearization loop with fuzzy controllers has been designed for the control of the decoupled dynamics. Rolling of the controlled mechanism over linear and curvilinear trajectories has been simulated by using the proposed decoupled dynamical model and feedback controllers. Analysis of radius of curvature over curvilinear trajectories has also been investigated.


Sign in / Sign up

Export Citation Format

Share Document