Structural synthesis of maximally regular T3R2-type parallel robots via theory of linear transformations and evolutionary morphology

Robotica ◽  
2009 ◽  
Vol 27 (1) ◽  
pp. 79-101 ◽  
Author(s):  
G. Gogu

SUMMARYThe paper presents structural synthesis of maximally regular T3R2-type parallel robotic manipulators (PMs) with five degrees of freedom. The moving platform has three independent translations (T3) and two rotations (R2). A method is proposed for structural synthesis of maximally regular T3R2-type PMs based on the theory of linear transformations and evolutionary morphology. A one-to-one correspondence exists between the actuated joint velocity space and the external velocity space of the moving platform. The Jacobian matrix mapping the two vector spaces of maximally regular T3R2-type PMs presented in this paper is the 5×5 identity matrix throughout the entire workspace. The condition number and the determinant of the Jacobian matrix being equal to one, the manipulator performs very well with regard to force and motion transmission capabilities. Kinematic analysis of maximally regular parallel robots is trivial and no computation is required for real-time control. This paper presents in a unified approach the structural synthesis of PMs with five degrees of freedom with decoupled and uncoupled motions, along with the maximally regular solutions.

Author(s):  
Grigore Gogu

The paper presents singularity-free fully-isotropic T1R2-type parallel manipulators (PMs) with three degrees of freedom. The mobile platform has one independent translation (T1) and two rotations (R2). A method is proposed for structural synthesis of fully-isotropic T1R2-type PMs based on the theory of linear transformations. A one-to-one correspondence exists between the actuated joint velocity space and the external velocity space of the moving platform. The Jacobian matrix mapping the two vector spaces of fully-isotropic T1R2-type PMs presented in this paper is the 3x3 identity matrix throughout the entire workspace. The condition number and the determinant of the Jacobian matrix being equal to one, the manipulator performs very well with regard to force and motion transmission capabilities. As far as we are aware, this paper presents for the first time in the literature solutions of singularity-free T1R2-type PMs with decoupled an uncoupled motions, along with the fully-isotropic solutions.


Author(s):  
Grigore Gogu

The paper presents fully-isotropic redundantly-actuated parallel wrists (RaPWs) with three degrees of freedom. The mobile platform has three independent rotations. A method is proposed for structural synthesis of fully-isotropic RaPWs based on the theory of linear transformations. A one-to-one correspondence exists between the actuated joint velocity space and the external velocity space of the moving platform. The Jacobian mapping the two vector spaces of fully-isotropic RaPWs presented in this paper is 3×3 identity matrix throughout the entire workspace. The condition number and the determinant of the Jacobian matrix being equal to one, the manipulator performs very well with regard to force and motion transmission capabilities. Redundant actuation is used to obtain fully-isotropic parallel wrists with three degrees of freedom. As far as we are aware, this paper presents for the first time in the literature the use of redundancy to design fully-isotropic parallel wrists as well as solutions of fullyisotropic RaPWs with three degrees of freedom.


2001 ◽  
Author(s):  
Tamás Kalmár-Nagy ◽  
Pritam Ganguly ◽  
Raffaello D’Andrea

Abstract In this paper, we discuss an innovative method of generating near-optimal trajectories for a robot with omni-directional drive capabilities, taking into account the dynamics of the actuators and the system. The relaxation of optimality results in immense computational savings, critical in dynamic environments. In particular, a decoupling strategy for each of the three degrees of freedom of the vehicle is presented, along with a method for coordinating the degrees of freedom. A nearly optimal trajectory for the vehicle can typically be calculated in less than 1000 floating point operations, which makes it attractive for real-time control in dynamic and uncertain environments.


Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 81
Author(s):  
Santiago T. Puente ◽  
Lucía Más ◽  
Fernando Torres ◽  
and Francisco A. Candelas

This article presents a multiplatform application for the tele-operation of a robot hand using virtualization in Unity 3D. This approach grants usability to users that need to control a robotic hand, allowing supervision in a collaborative way. This paper focuses on a user application designed for the 3D virtualization of a robotic hand and the tele-operation architecture. The designed system allows for the simulation of any robotic hand. It has been tested with the virtualization of the four-fingered Allegro Hand of SimLab with 16 degrees of freedom, and the Shadow hand with 24 degrees of freedom. The system allows for the control of the position of each finger by means of joint and Cartesian co-ordinates. All user control interfaces are designed using Unity 3D, such that a multiplatform philosophy is achieved. The server side allows the user application to connect to a ROS (Robot Operating System) server through a TCP/IP socket, to control a real hand or to share a simulation of it among several users. If a real robot hand is used, real-time control and feedback of all the joints of the hand is communicated to the set of users. Finally, the system has been tested with a set of users with satisfactory results.


2005 ◽  
Vol 291-292 ◽  
pp. 495-500
Author(s):  
Ping Zou

In this paper, the moving platform of the biglide parallel grinder with six degrees of freedom will keep moving horizontally at any time using parallelograms. Besides grinding the helical drill point, this grinder also can work as drilling and welding machine tool as well as a CMM. The joint-velocity Jacobian matrix is calculated. Moreover, the dynamic equations are derived by applying the Lagrangian formulation.


2004 ◽  
Vol 16 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Shugen Ma ◽  
◽  
Mitsuru Watanabe ◽  

Hyper-redundant manipulators have high number of kinematic degrees of freedom, and possess unconventional features such as the ability to enter narrow spaces while avoiding obstacles. To control these hyper-redundant manipulators accurately, manipulator dynamics should be considered. This is, however, time-comsuming and makes implementation of real-time control difficult. In this paper, we propose a dynamic control scheme for hyper-redundant manipulators, which is based on analysis in defined posture space where three parameters were used to determine the manipulator posture. Manipulator dynamics are modeled on the parameterized form with the parameter of the posture space path. The posture space path-tracking feed-forward controller is then formulated on the basis of a parameterized dynamic equation. Computer simulation, in which a hyper-redundant manipulator traces the posture space path well by using the proposed feed-forward controller, proved that the hyper-redundant manipulator tracks the workspace path accurately.


Author(s):  
Jianjun Yao ◽  
Yuxuan Huang ◽  
Guilin Jiang ◽  
Shuang Gao ◽  
Rui Xiao ◽  
...  

Freight trains play a vital role in cargo transportation in the world. The freight cars need to be redistributed for marshalling according to different destinations in the hump yard. Humans are usually employed to uncouple the freight cars in the marshalling yard. However, the work environment is difficult to work in, because of its potential danger and the effects of the surrounding environment can have a very serious impact on human’s health. A wheeled robot is developed to replace humans to finish the uncoupling task. It has four degrees-of-freedom with flexible motion. Based on the D-H method, the kinematics, including the forward and the inverse kinematics, is firstly analysed. The dynamic analysis is then studied by Newton–Euler equations. The workspace is lastly investigated to verify its operational space such that the coupler can be easily reached by the robot manipulator. Those characteristic analyses provide a basis for motion planning and real-time control of the robot.


Sign in / Sign up

Export Citation Format

Share Document