Task-priority motion planning of underactuated systems: an endogenous configuration space approach

Robotica ◽  
2009 ◽  
Vol 28 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Adam Ratajczak ◽  
Joanna Karpińska ◽  
Krzysztof Tchoń

SUMMARYThis paper presents a task-priority motion planning algorithm for underactuated robotic systems. The motion planning algorithm combines two features: the idea of the task-priority control of redundant manipulators and the endogenous configuration space approach. This combination results in the algorithm which solves the primary motion planning task simultaneously with one or more secondary tasks ordered in accordance with decreasing priorities. The performance of the task-priority motion planning algorithm has been illustrated with computer simulations of the motion planning problem for a container ship.

2017 ◽  
Vol 27 (4) ◽  
pp. 555-573 ◽  
Author(s):  
Joanna Ratajczak ◽  
Krzysztof Tchoń

AbstractThis paper presents the dynamically consistent Jacobian inverse for non-holonomic robotic system, and its application to solving the motion planning problem. The system’s kinematics are represented by a driftless control system, and defined in terms of its input-output map in accordance with the endogenous configuration space approach. The dynamically consistent Jacobian inverse (DCJI) has been introduced by means of a Riemannian metric in the endogenous configuration space, exploiting the reduced inertia matrix of the system’s dynamics. The consistency condition is formulated as the commutativity property of a diagram of maps. Singular configurations of DCJI are studied, and shown to coincide with the kinematic singularities. A parametric form of DCJI is derived, and used for solving example motion planning problems for the trident snake mobile robot. Some advantages in performance of DCJI in comparison to the Jacobian pseudoinverse are discovered.


2019 ◽  
Vol 16 (3) ◽  
pp. 172988141984737 ◽  
Author(s):  
Kai Mi ◽  
Haojian Zhang ◽  
Jun Zheng ◽  
Jianhua Hu ◽  
Dengxiang Zhuang ◽  
...  

We consider a motion planning problem with task space constraints in a complex environment for redundant manipulators. For this problem, we propose a motion planning algorithm that combines kinematics control with rapidly exploring random sampling methods. Meanwhile, we introduce an optimization structure similar to dynamic programming into the algorithm. The proposed algorithm can generate an asymptotically optimized smooth path in joint space, which continuously satisfies task space constraints and avoids obstacles. We have confirmed that the proposed algorithm is probabilistically complete and asymptotically optimized. Finally, we conduct multiple experiments with path length and tracking error as optimization targets and the planning results reflect the optimization effect of the algorithm.


2016 ◽  
Vol 85 (3-4) ◽  
pp. 511-522 ◽  
Author(s):  
Ida Góral ◽  
Krzysztof Tchoń

AbstractThis paper addresses the motion planning problem of nonholonomic robotic systems. The system’s kinematics are described by a driftless control system with output. It is assumed that the control functions are represented in a parametric form, as truncated orthogonal series. A new motion planning algorithm is proposed based on the solution of a Lagrange-type optimisation problem stated in the linear approximation of the parametrised system. Performance of the algorithm is illustrated by numeric computations for a motion planning problem of the rolling ball.


2013 ◽  
Vol 4 (1) ◽  
pp. 153-166 ◽  
Author(s):  
A. Ratajczak ◽  
K. Tchoń

Abstract. This paper addresses the motion planning problem in non-holonomic robotic systems. The system's kinematics and dynamics are represented as a control affine system with outputs. The problem is defined in terms of the end-point map of this system, using the endogenous configuration space approach. Special attention is paid to the multiple-task motion planning problem, i.e. a problem that beyond the proper motion planning task includes a number of additional tasks. For multiple-task motion planning two strategies have been proposed, called the egalitarian approach and the prioritarian approach. Also, two computational strategies have been launched of solving the motion planning problem: the parametric and the non-parametric. The motion planning and computational strategies have been applied to a motion planning problem of the trident snake robot. Performance of the motion planning algorithms is illustrated with computer simulations.


Robotica ◽  
2010 ◽  
Vol 28 (6) ◽  
pp. 943-943
Author(s):  
Adam Ratajczak ◽  
Joanna Karpińska ◽  
Krzysztof Tchoń

Figures 2 and 5 were incorrectly reproduced in the above publication (Ratajczak et al. 2009). The figures are reproduced below in their correct form. Fig. 2.Task-priority algorithm (both S1 and S2).Fig. 5.Single-task algorithm (only S1).


Author(s):  
Krzysztof Tchoń ◽  
Katarzyna Zadarnowska

AbstractWe examine applicability of normal forms of non-holonomic robotic systems to the problem of motion planning. A case study is analyzed of a planar, free-floating space robot consisting of a mobile base equipped with an on-board manipulator. It is assumed that during the robot’s motion its conserved angular momentum is zero. The motion planning problem is first solved at velocity level, and then torques at the joints are found as a solution of an inverse dynamics problem. A novelty of this paper lies in using the chained normal form of the robot’s dynamics and corresponding feedback transformations for motion planning at the velocity level. Two basic cases are studied, depending on the position of mounting point of the on-board manipulator. Comprehensive computational results are presented, and compared with the results provided by the Endogenous Configuration Space Approach. Advantages and limitations of applying normal forms for robot motion planning are discussed.


Robotica ◽  
1994 ◽  
Vol 12 (4) ◽  
pp. 323-333 ◽  
Author(s):  
R.H.T. Chan ◽  
P.K.S. Tam ◽  
D.N.K. Leung

SUMMARYThis paper presents a new neural networks-based method to solve the motion planning problem, i.e. to construct a collision-free path for a moving object among fixed obstacles. Our ‘navigator’ basically consists of two neural networks: The first one is a modified feed-forward neural network, which is used to determine the configuration space; the moving object is modelled as a configuration point in the configuration space. The second neural network is a modified bidirectional associative memory, which is used to find a path for the configuration point through the configuration space while avoiding the configuration obstacles. The basic processing unit of the neural networks may be constructed using logic gates, including AND gates, OR gates, NOT gate and flip flops. Examples of efficient solutions to difficult motion planning problems using our proposed techniques are presented.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141983685 ◽  
Author(s):  
Jiangping Wang ◽  
Shirong Liu ◽  
Botao Zhang ◽  
Changbin Yu

This article proposes an efficient and probabilistic complete planning algorithm to address motion planning problem involving orientation constraints for decoupled dual-arm robots. The algorithm is to combine sampling-based planning method with analytical inverse kinematic calculation, which randomly samples constraint-satisfying configurations on the constraint manifold using the analytical inverse kinematic solver and incrementally connects them to the motion paths in joint space. As the analytical inverse kinematic solver is applied to calculate constraint-satisfying joint configurations, the proposed algorithm is characterized by its efficiency and accuracy. We have demonstrated the effectiveness of our approach on the Willow Garage’s PR2 simulation platform by generating trajectory across a wide range of orientation-constrained scenarios for dual-arm manipulation.


2020 ◽  
Vol 10 (9) ◽  
pp. 3180 ◽  
Author(s):  
Dongfang Dang ◽  
Feng Gao ◽  
Qiuxia Hu

Vehicles are highly coupled and multi-degree nonlinear systems. The establishment of an appropriate vehicle dynamical model is the basis of motion planning for autonomous vehicles. With the development of autonomous vehicles from L2 to L3 and beyond, the automatic driving system is required to make decisions and plans in a wide range of speeds and on bends with large curvature. In order to make precise and high-quality control maneuvers, it is important to account for the effects of dynamical coupling in these working conditions. In this paper, a new single-coupled dynamical model (SDM) is proposed to deal with the various dynamical coupling effects by identifying and simplifying the complicated one. An autonomous vehicle motion planning problem is then formulated using the nonlinear model predictive control theory (NMPC) with the SDM constraint (NMPC-SDM). We validated the NMPC-SDM with hardware-in-the-loop (HIL) experiments to evaluate improvements to control performance by comparing with the planners original design, using the kinematic and single-track models. The comparative results show the superiority of the proposed motion planning algorithm in improving the maneuverability and tracking performance.


Sign in / Sign up

Export Citation Format

Share Document