A flexible method combining camera calibration and hand–eye calibration

Robotica ◽  
2013 ◽  
Vol 31 (5) ◽  
pp. 747-756 ◽  
Author(s):  
Zijian Zhao ◽  
Ying Weng

SUMMARYWe consider the conventional techniques of vision robot system calibration where camera parameters and robot hand–eye parameters are computed separately, i.e., first performing camera calibration and then carrying out hand–eye calibration based on the calibrated parameters of cameras. In this paper we propose a joint algorithm that combines the camera calibration and the hand–eye calibration together. The proposed algorithm gives the solutions of the cameras' parameters and the hand–eye parameters simultaneously by using nonlinear optimization. Both simulations and real experiments show the superiority of our algorithm. We also apply our algorithm in the real application of the robot-assisted surgical system, and very good results have been obtained.

2021 ◽  
Author(s):  
Yuriy Anisimov ◽  
Gerd Reis ◽  
Didier Stricker

The ability to create an accurate three-dimensional reconstruction of a captured scene draws attention to the prin- ciples of light fields. This paper presents an approach for light field camera calibration and rectification, based on pairwise pattern-based parameters extraction. It is followed by a correspondence-based algorithm for camera parameters refinement from arbitrary scenes using the triangulation filter and nonlinear optimization. The effec- tiveness of our approach is validated on both real and synthetic data.


2019 ◽  
Vol 1 (1) ◽  
pp. e000019 ◽  
Author(s):  
Luke Hares ◽  
Paul Roberts ◽  
Keith Marshall ◽  
Mark Slack

BackgroundRobot-assisted minimal access surgery (MAS) reduces blood loss, recovery time, intraoperative and postoperative complications and pain. However, uptake of robotic MAS remains low, suggesting there are barriers to its use. To overcome these barriers, a new surgical robot system, Versius, was developed based on the needs and feedback of surgeons and surgical teams.MethodsThe surgical robot prototype was designed based on observations in the operating room (OR) and previous interviews with surgeons. Formative studies with surgeons and surgical teams were used to refine the prototype design, resulting in modifications to all components, including the arms, instruments, handgrips and surgeon console. Proof-of-concept cadaver studies were used to further optimize its design by assessing its usability during surgical procedures.ResultsFeedback led to the development of a novel, mobile design with independent arm carts and surgical console, linked by supported serial or parallel connections, providing maximum flexibility in the OR. Instrument tips were developed based on surgeons’ preferred designs and wristed at the tip providing seven degrees of freedom within the patient. Multiple handgrip designs were assessed by surgeons; of these, a ‘game controller’ design was rated most popular and usable. An open surgical console design allowing multiple working positions was rated highest by surgeons and the surgical teams.ConclusionsThis surgical robot system has been developed using feedback from end users throughout the design process and aims to minimize barriers to robotic MAS uptake. Additionally, these studies demonstrate system success in the surgical procedures it was designed for. The studies reported here, and further studies of the Versius Surgical System, are intended to align with IDEAL (Idea, Development, Exploration, Assessment, Long-term study) Framework guidance.


2014 ◽  
Vol 654 ◽  
pp. 187-190 ◽  
Author(s):  
Hong Hua Zhao ◽  
Jian Ying Tian ◽  
Dong Song Li ◽  
Chang Sheng Ai

Clinical treatment for mandible defects is Mandible Reconstruction Surgery (MRS) including bone grafts, distraction osteogenesis and bone tissue engineering, however, MRS is operated by doctors without 3D navigation at present which leads to lots of disadvantages such as bad operational control, low positioning accuracy and poor stability. Therefore, a robotic surgical system was designed to assist surgeons on manipulating. For this study, the robot system was given in brief, then mechanical design and control system of the novel three-arm robot.And experiment results in this study show that the robot works stably and accurately. The development of this medical robot system contributes to the promotion and popularization of the MRS in clinics.


1997 ◽  
Vol 6 (4) ◽  
pp. 413-432 ◽  
Author(s):  
Richard L. Holloway

Augmented reality (AR) systems typically use see-through head-mounted displays (STHMDs) to superimpose images of computer-generated objects onto the user's view of the real environment in order to augment it with additional information. The main failing of current AR systems is that the virtual objects displayed in the STHMD appear in the wrong position relative to the real environment. This registration error has many causes: system delay, tracker error, calibration error, optical distortion, and misalignment of the model, to name only a few. Although some work has been done in the area of system calibration and error correction, very little work has been done on characterizing the nature and sensitivity of the errors that cause misregistration in AR systems. This paper presents the main results of an end-to-end error analysis of an optical STHMD-based tool for surgery planning. The analysis was done with a mathematical model of the system and the main results were checked by taking measurements on a real system under controlled circumstances. The model makes it possible to analyze the sensitivity of the system-registration error to errors in each part of the system. The major results of the analysis are: (1) Even for moderate head velocities, system delay causes more registration error than all other sources combined; (2) eye tracking is probably not necessary; (3) tracker error is a significant problem both in head tracking and in system calibration; (4) the World (or reference) coordinate system adds error and should be omitted when possible; (5) computational correction of optical distortion may introduce more delay-induced registration error than the distortion error it corrects, and (6) there are many small error sources that will make submillimeter registration almost impossible in an optical STHMD system without feedback. Although this model was developed for optical STHMDs for surgical planning, many of the results apply to other HMDs as well.


2021 ◽  
Author(s):  
Wei Tian ◽  
Zhan Shi ◽  
Zuchang Li ◽  
Mingxing Fan ◽  
Qilong Wang ◽  
...  

Abstract Objective To explore navigation-related factors interfering with accuracy of robot-assisted surgery. Methods We made a measurement model to test the accuracy of the TianJi Robot system when performing the stimulated screw placement procedure. The three-coordinate machine was used to measure the deviation between the actual position and the planned position. We designed corresponding experiments to explore the effects of different navigation-related factors on the screw placement accuracy. The deviations were measured at different distance (ranging from 1.2 m to 2.2 m) between the navigation optical stereo camera and the tracker and each distance was measured 50 times. The distance between the optical camera and the patient tracker was set at 1.4 m and the deviations were measured at different angles between the camera and the robot tracker, each angle was measured more than 25 times. Data was donated with mean and standard deviation. The line charts were employed to describe the changes of deviations over one clinical factor including distance and angle. Results Within the available scope of navigation optical system (1.2 m-2.2 m), the deviation increased with the distance (χ2=479.107, P<0.001). The robotic system accuracy was high and stable (mean deviation 0.332 mm ± 0.067 mm) when the relative angle between the optical camera and the tracker less than 40 degrees. Conclusions Accuracy of robot system was affected by the relative distance and angle between the optical camera and the tracker. When placing and adjusting the optical tracking devices, surgeons should set the relative distance between the optical camera and the patient tracker as 1.4 m- 1.5 m and the relative angle less than 40 degrees.


2011 ◽  
Vol 36 (5) ◽  
pp. 496-498 ◽  
Author(s):  
Norihiko Ishikawa ◽  
Masahiko Kawaguchi ◽  
Hideki Moriyama ◽  
Nobuhiro Tanaka ◽  
Go Watanabe

2011 ◽  
Vol 10 (2) ◽  
pp. 125 ◽  
Author(s):  
C. Giberti ◽  
M. Schenone ◽  
F. Gallo ◽  
P. Cortese ◽  
G. Ninotta

2018 ◽  
Vol 18 (21) ◽  
pp. 8924-8932 ◽  
Author(s):  
Lingtao Yu ◽  
Yusheng Yan ◽  
Xiaoyan Yu ◽  
Yongqiang Xia

Sign in / Sign up

Export Citation Format

Share Document