scholarly journals Optical Navigation-Related Factors Interfering With The Accuracy of Robot-Assisted Surgery

Author(s):  
Wei Tian ◽  
Zhan Shi ◽  
Zuchang Li ◽  
Mingxing Fan ◽  
Qilong Wang ◽  
...  

Abstract Objective To explore navigation-related factors interfering with accuracy of robot-assisted surgery. Methods We made a measurement model to test the accuracy of the TianJi Robot system when performing the stimulated screw placement procedure. The three-coordinate machine was used to measure the deviation between the actual position and the planned position. We designed corresponding experiments to explore the effects of different navigation-related factors on the screw placement accuracy. The deviations were measured at different distance (ranging from 1.2 m to 2.2 m) between the navigation optical stereo camera and the tracker and each distance was measured 50 times. The distance between the optical camera and the patient tracker was set at 1.4 m and the deviations were measured at different angles between the camera and the robot tracker, each angle was measured more than 25 times. Data was donated with mean and standard deviation. The line charts were employed to describe the changes of deviations over one clinical factor including distance and angle. Results Within the available scope of navigation optical system (1.2 m-2.2 m), the deviation increased with the distance (χ2=479.107, P<0.001). The robotic system accuracy was high and stable (mean deviation 0.332 mm ± 0.067 mm) when the relative angle between the optical camera and the tracker less than 40 degrees. Conclusions Accuracy of robot system was affected by the relative distance and angle between the optical camera and the tracker. When placing and adjusting the optical tracking devices, surgeons should set the relative distance between the optical camera and the patient tracker as 1.4 m- 1.5 m and the relative angle less than 40 degrees.

2011 ◽  
Vol 403-408 ◽  
pp. 3009-3014
Author(s):  
He Qiang Tian ◽  
Dong Mei Wu ◽  
Zhi Jiang Du ◽  
Li Ning Sun

Robotic–assisted surgery is a new trend in medicine. To overcome problems in artificial cervical disc replacement surgery, a robot-assisted surgery system which consists of an active 6-UPS parallel robot and its control system, a surgical planning system and an optical tracking system was developed to replace the cumbersome mechanical positioning device. A positioning method for robot-assisted cervical disc replacement surgery will be studied. Firstly, the robot-assisted surgery system is described. Secondly, the coordinate transformation method for robot-assisted surgery positioning is given. Then, a preoperative position and pose planning method is given. Finally, a robot-assisted surgery positioning by using the method in this paper is carried out. The result shows that the robot-assisted surgery positioning method in this paper is an effective method for artificial cervical disc replacement surgery.


2022 ◽  
Vol 52 (1) ◽  
pp. E11

OBJECTIVE The application of robots in the field of pedicle screw placement has achieved great success. However, decompressive laminectomy, a step that is just as critical as pedicle screw placement, does not have a mature robot-assisted system. To address this lack, the authors designed a collaborative spine robot system to assist with laminectomy. In this study, they aimed to investigate the reliability of this novel collaborative spinal robot system and compare it with manual laminectomy (ML). METHODS Thirty in vitro porcine lumbar vertebral specimens were obtained as experimental bone specimens. Robot-assisted laminectomy (RAL) was performed on the left side of the lamina (n = 30) and ML was performed on the right side (n = 30). The time required for laminectomy on one side, whether the lamina was penetrated, and the remaining thickness of the lamina were compared between the two groups. RESULTS The time required for laminectomy on one side was longer in the RAL group than in the ML group (median 326 seconds [IQR 133 seconds] vs 108.5 seconds [IQR 43 seconds], p < 0.001). In the RAL group, complete lamina penetration occurred twice (6.7%), while in the ML group, it occurred 9 times (30%); the difference was statistically significant (p = 0.045). There was no statistically significant difference in the remaining lamina thickness between the two groups (median 1.035 mm [IQR 0.419 mm] vs 1.084 mm [IQR 0.383 mm], p = 0.842). CONCLUSIONS The results of this study confirm the safety of this novel spinal robot system for laminectomy. However, its efficiency requires further improvement.


2020 ◽  
Author(s):  
Joan Torrent-Sellens ◽  
Ana Jiménez-Zarco ◽  
Francesc Saigí-Rubió

BACKGROUND Increasingly intelligent and autonomous robots are destined to have a huge impact on our society. Their adoption, however, represents a major change to the healthcare sector’s traditional practices, which, in turn, poses certain challenges. To what extent is it possible to foresee a near-future scenario in which minor routine surgery is directed by robots? And what are the patients’ or general public’s perceptions of having surgical procedures performed on them by robots, be it totally or partially? A patient’s trust in robots and AI may facilitate the spread and use of such technologies. OBJECTIVE The goal of our study was to establish the factors that influence how people feel about having a medical operation performed on them by a robot. METHODS We used data from a 2017 Flash Eurobarometer (number 460) of European Commission with 27,901 citizens aged 15 years and over in the 28 countries of the European Union. The research designs and tests a technology acceptance model (TAM). Logistic regression (odds ratios, OR) to model the predictors of trust in robot-assisted surgery was calculated through motivational factors, robots using experience and sociodemographic independent variables. RESULTS The negative relationship between most of the predictors of ease of use, expected benefits and attitude towards robots, and confidence in robot-assisted surgery was contrasted. The only non-sociodemographic predictor variable that has a positive relationship with trust in robots participating in a surgical intervention is previous experience in the use of robots. In this context, we analyze the confidence predictors for three different levels of robot use experience (zero use, average use, and high use). The results obtained indicate that, as the experience of using robots increases, the predictive coefficients related to information, attitude and perception of robots become more negative. Research results also determined that variables of a sociodemographic nature played an important predictive role. It was confirmed that the effect of experience on trust in robots for surgical interventions was greater among men, people between 40 and 54 years old, and those with higher educational levels. CONCLUSIONS Despite the considerable benefits for the patient that the use of robots can bring in a surgical intervention, the results obtained show that trust in robots goes beyond rational decision-making. By contrasting the reasons that generate trust and mistrust in robots, especially by highlighting the experience of use as a key element, the research makes a new contribution to the state of the art and draws practical implications of the use of robots for health policy and practice.


2020 ◽  
Vol 6 (3) ◽  
pp. 127-130
Author(s):  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Nico Lösch ◽  
Peter P. Pott

AbstractAccess to systems for robot-assisted surgery is limited due to high costs. To enable widespread use, numerous issues have to be addressed to improve and/or simplify their components. Current systems commonly use universal linkage-based input devices, and only a few applicationoriented and specialized designs are used. A versatile virtual reality controller is proposed as an alternative input device for the control of a seven degree of freedom articulated robotic arm. The real-time capabilities of the setup, replicating a system for robot-assisted teleoperated surgery, are investigated to assess suitability. Image-based assessment showed a considerable system latency of 81.7 ± 27.7 ms. However, due to its versatility, the virtual reality controller is a promising alternative to current input devices for research around medical telemanipulation systems.


2021 ◽  
Vol 10 (4) ◽  
pp. 589
Author(s):  
Mariusz G. Fleszar ◽  
Paulina Fortuna ◽  
Marek Zawadzki ◽  
Paweł Hodurek ◽  
Iwona Bednarz-Misa ◽  
...  

Excessive endocrine response to trauma negatively affects patients’ well-being. Cortisol dynamics following robot-assisted colorectal surgery are unknown. We aimed at determining the impact of cancer pathology and surgery-related factors on baseline cortisol levels and analyzed its time-profile in colorectal cancer patients undergoing open or robot-assisted surgery. Cortisol levels were measured using liquid chromatography quadrupole time-of-flight mass spectrometry. Baseline cortisol was not associated with any patient- or disease-related factors. Post-surgery cortisol increased by 36% at 8 h and returned to baseline on postoperative day three. The cortisol time profile was significantly affected by surgery type, estimated blood loss, and length of surgery. Baseline-adjusted cortisol increase was greater in females at hour 8 and in both females and patients from open surgery group at hour 24. Solely in the open surgery group, cortisol dynamics paralleled changes in interleukin (IL)-1β, IL-10, IL-1ra, IL-7, IL-8 and tumor necrosis factor (TNF)-α but did not correlate with changes in IL-6 or interferon (IFN)-γ at any time-point. Cortisol co-examined with C-reactive protein was predictive of surgical site infections (SSI) with high accuracy. In conclusion, patient’s sex and surgery invasiveness affect cortisol dynamics. Surgery-induced elevation can be reduced by minimally invasive robot-assisted procedures. Cortisol and C-reactive protein as SSI biomarkers might be of value in the evaluation of safety of early discharge of patients.


Sign in / Sign up

Export Citation Format

Share Document