Motion planning of strongly controllable stratified systems

Robotica ◽  
2015 ◽  
Vol 34 (10) ◽  
pp. 2223-2240
Author(s):  
Ignacy Duleba ◽  
Michal Opalka

SUMMARYIn this paper a motion planner for nonholonomic stratified systems was proposed. Those systems may arise easily when reliable systems are designed to be robust against failures in difficult servicing environments. For a special class of the systems, a strong controllability condition was introduced, and a criterion to satisfy the condition was formulated and used to plan the motion of free-floating space manipulators. Modules of the planner were enumerated and their roles were emphasized. Some features of the planner were examined and discussed based on simulation results performed on two models of space manipulators.

Robotica ◽  
2021 ◽  
pp. 1-22
Author(s):  
Limin Shen ◽  
Yuanmei Wen

Abstract Repetitive motion planning (RMP) is important in operating redundant robotic manipulators. In this paper, a new RMP scheme that is based on the pseudoinverse formulation is proposed for redundant robotic manipulators. Such a scheme is derived from the discretization of an existing RMP scheme by utilizing the difference formula. Then, theoretical analysis and results are presented to show the characteristic of the proposed RMP scheme. That is, this scheme possesses the characteristic of cube pattern in the end-effector planning precision. The proposed RMP scheme is further extended and studied for redundant robotic manipulators under joint constraint. Based on a four-link robotic manipulator, simulation results substantiate the effectiveness and superiority of the proposed RMP scheme and its extended one.


2019 ◽  
Vol 41 (12) ◽  
pp. 3321-3330 ◽  
Author(s):  
Emre Ege ◽  
Mustafa Mert Ankarali

In this paper, we propose a new motion planning method that aims to robustly and computationally efficiently solve path planning and navigation problems for unmanned surface vehicles (USVs). Our approach is based on synthesizing two different existing methodologies: sequential composition of dynamic behaviours and rapidly exploring random trees (RRT). The main motivation of this integrated solution is to develop a robust feedback-based and yet computationally feasible motion planning algorithm for USVs. In order to illustrate the main approach and show the feasibility of the method, we performed simulations and tested the overall performance and applicability for future experimental applications. We also tested the robustness of the method under relatively extreme environmental uncertainty. Simulation results indicate that our method can produce robust and computationally feasible solutions for a broad class of USVs.


2011 ◽  
Vol 121-126 ◽  
pp. 110-115
Author(s):  
Hai Hong Pan ◽  
Lin Chen ◽  
Yun Fei Zhou

During the exposure process of a step-and-scan lithography, the transitional time between continuous scans does not produce production efficiency in which no scanning occurs. To minimize the transitional time and therefore to improve the productivity we introduce the motion-overlap scheme, which inserts a step-move between the overrun phase and the phase before exposure of next field along the scanning direction for wafer stage during the continuous exposure process. The simulation results show that the motion-overlap scheme enables the total time of two continuous scans of four different exposure field sizes reduce 8.28%, 7.11%, 5.87% and 4.53%, respectively, compared with the conventional motion planning method. This indicates that the theoretical derivation of motion-overlap planning method is effective.


2005 ◽  
Vol 127 (4) ◽  
pp. 550-563 ◽  
Author(s):  
C. K. Kevin Jui ◽  
Qiao Sun

Parallel manipulators are uncontrollable at force singularities due to the infeasibly high actuator forces required. Existing remedies include the application of actuation redundancy and motion planning for singularity avoidance. While actuation redundancy increases cost and design complexity, singularity avoidance reduces the effective workspace of a parallel manipulator. This article presents a path tracking type of approach to operate parallel manipulators when passing through force singularities. We study motion feasibility in the neighborhood of singularity and conclude that a parallel manipulator may track a path through singular poses if its velocity and acceleration are properly constrained. Techniques for path verification and tracking are presented, and an inverse dynamics algorithm that takes actuator bounds into account is examined. Simulation results for a planar parallel manipulator are given to demonstrate the details of this approach.


2021 ◽  
Author(s):  
Weize Zhang ◽  
Peyman Yadmellat ◽  
Zhiwei Gao

Motion planning is one of the key modules in autonomous driving systems to generate trajectories for self-driving vehicles to follow. A common motion planning approach is to generate trajectories within semantic safe corridors. The trajectories are generated by optimizing parametric curves (e.g. Bezier curves) according to an objective function. To guarantee safety, the curves are required to satisfy the convex hull property, and be contained within the safety corridors. The convex hull property however does not necessary hold for time-dependent corridors, and depends on the shape of corridors. The existing approaches only support simple shape corridors, which is restrictive in real-world, complex scenarios. In this paper, we provide a sufficient condition for general convex, spatio-temporal corridors with theoretical proof of guaranteed convex hull property. The theorem allows for using more complicated shapes to generate spatio-temporal corridors and minimizing the uncovered search space to $O(\frac{1}{n^2})$ compared to $O(1)$ of trapezoidal corridors, which can improve the optimality of the solution. Simulation results show that using general convex corridors yields less harsh brakes, hence improving the overall smoothness of the resulting trajectories.


2013 ◽  
Vol 385-386 ◽  
pp. 69-72 ◽  
Author(s):  
Heng Hua Zhao ◽  
Hui Yang ◽  
Hong Shuan Fu

The workspace of a machine tool is an important indicator to measure a machine tool performance as well as the important data of mechanical design and motion planning. This article in view of the 3-TPT parallel machine tool. First, according to the positive and inverse solution of Mechanism kinematics, the expression of the range of motion of the moving platform reference point was calculated. Then, by considering the effects of rod length and Hooke joints on the workspace, the workspace could be simulated by using MATLAB software and LabVIEW software.The simulation results show that the parallel machine tool workspace is continuous and no caves.


10.5772/56402 ◽  
2013 ◽  
Vol 10 (5) ◽  
pp. 253 ◽  
Author(s):  
Gang Chen ◽  
Long Zhang ◽  
Qingxuan Jia ◽  
Ming Chu ◽  
Hanxu Sun

2012 ◽  
Vol 63 (1) ◽  
pp. 21-27
Author(s):  
Souhila Aboura ◽  
Abdelhafid Omari ◽  
Kadda Meguenni

Optimizing Motion Planning for Hyper Dynamic ManipulatorThis paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document