Development of a revolute-type kinematic model for human upper limb using a matrix approach

Robotica ◽  
2021 ◽  
pp. 1-22
Author(s):  
Anil Kumar Gillawat

Abstract A mathematical model is proposed for a revolute joint mechanism with an n-degree of freedom (DOF). The matrix approach is used for finding the relation between two consecutive links to determine desired link parameters such as position, velocity and acceleration using the forward kinematic approach. The matrix approach was confirmed for a proposed 10 DOF revolute type (R-type) human upper limb model with servo motors at each joint. Two DOFs are considered each at shoulder, elbow and wrist joint, followed by four DOF for the fingers. Two DOFs were considered for metacarpophalangeal (mcp) and one DOF each for proximal interphalangeal (pip) and distal interphalangeal (dip) joints. MATLAB script function was used to evaluate the mathematical model for determining kinematic parameters for all the proposed human upper limb model joints. The simplified method for kinematic analysis proposed in this paper will further simplify the dynamic modeling of any mechanism for determining joint torques and hence, easy to design control system for joint movements.

2021 ◽  
Vol 12 (1) ◽  
pp. 661-675
Author(s):  
Qiaolian Xie ◽  
Qiaoling Meng ◽  
Qingxin Zeng ◽  
Hongliu Yu ◽  
Zhijia Shen

Abstract. Upper limb exoskeleton rehabilitation robots have been attracting significant attention by researchers due to their adaptive training, highly repetitive motion, and ability to enhance the self-care capabilities of patients with disabilities. It is a key problem that the existing upper limb exoskeletons cannot stay in line with the corresponding human arm during exercise. The aim is to evaluate whether the existing upper limb exoskeleton movement is in line with the human movement and to provide a design basis for the future exoskeleton. This paper proposes a new equivalent kinematic model for human upper limb, including the shoulder joint, elbow joint, and wrist joint, according to the human anatomical structure and sports biomechanical characteristics. And this paper analyzes the motion space according to the normal range of motion of joints for building the workspace of the proposed model. Then, the trajectory planning for an upper limb exoskeleton is evaluated and improved based on the proposed model. The evaluation results show that there were obvious differences between the exoskeleton prototype and human arm. The deviation between the human body and the exoskeleton of the improved trajectory is decreased to 41.64 %. In conclusion, the new equivalent kinematics model for the human upper limb proposed in this paper can effectively evaluate the existing upper limb exoskeleton and provide suggestions for structural improvements in line with human motion.


2015 ◽  
Vol 2015 (1) ◽  
pp. 10-13
Author(s):  
Евгений Дмитриевский ◽  
Evgeniy Dmitrievskiy

It has been determined that diagnostic variables which have an effect on the rotor-piston engine power Ne are the geometrical one (coefficient of inflation ηv) and the adjusting one (coefficient of air excess α). According to the mathematical model of the rotor engine, by the method of multiple regressive analysis, based on the use of the method of the least squares and on the matrix approach to the calculation of coefficients of the polynomial model, an equation has been obtained which properly describes the dependence of its power Ne on the combination of two independent diagnostic variables: ηv and α.


2014 ◽  
Vol 607 ◽  
pp. 764-767
Author(s):  
Qiang Wang ◽  
Run Ji

This paper provided a new method of controlling the rehabilitative training system for the patients with upper limb movement disorder. On the basis of the computer through the patient's healthy limb motion gesture motion parameters, analyzed the kinematic model of human upper limb joints, obtained the kinematic parameters of upper body. Study the establishment of different categories of patients with upper limb virtual computer model system for the detection of relevant parameters. And according to the requirements of upper limb rehabilitation training for patients with upper limb rehabilitative training system, researched the dynamics model of human upper limb, and indicated a method which may provide scientific and effective training methods to recover function rehabilitation for patients.


2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


Biomechanics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 102-117
Author(s):  
Nasser Rezzoug ◽  
Vincent Hernandez ◽  
Philippe Gorce

A force capacity evaluation for a given posture may provide better understanding of human motor abilities for applications in sport sciences, rehabilitation and ergonomics. From data on posture and maximum isometric joint torques, the upper-limb force feasible set of the hand was predicted by four models called force ellipsoid, scaled force ellipsoid, force polytope and scaled force polytope, which were compared with a measured force polytope. The volume, shape and force prediction errors were assessed. The scaled ellipsoid underestimated the maximal mean force, and the scaled polytope overestimated it. The scaled force ellipsoid underestimated the volume of the measured force distribution, whereas that of the scaled polytope was not significantly different from the measured distribution but exhibited larger variability. All the models characterized well the elongated shape of the measured force distribution. The angles between the main axes of the modelled ellipsoids and polytopes and that of the measured polytope were compared. The values ranged from 7.3° to 14.3°. Over the entire surface of the force ellipsoid, 39.7% of the points had prediction errors less than 50 N; 33.6% had errors between 50 and 100 N; and 26.8% had errors greater than 100N. For the force polytope, the percentages were 56.2%, 28.3% and 15.4%, respectively.


Author(s):  
Zhi-Qiang Zhang ◽  
Lian-Ying Ji ◽  
Zhi-Pei Huang ◽  
Jian-Kang Wu

Sign in / Sign up

Export Citation Format

Share Document