A discussion of the Jahns–Burnham proposal for the formation of zoned granitic pegmatites using solid-liquid-vapour inclusions from the Tanco Pegmatite, S.E. Manitoba, Canada

Author(s):  
Anne V. Thomas ◽  
Colin J. Bray ◽  
Edward T. C. Spooner

ABSTRACTJahns and Burnham (1969) proposed that the internal evolution of zoned granitic pegmatites could be explained by crystallisation from water-saturated melts which evolved to produce systems with a melt plus a separate aqueous fluid. Examination of microthermometric properties, chemical compositions and gas contents of solid-liquid-vapour inclusions from a number of the zones of the Tanco rare element granitic pegmatite places constraints on fluid evolution within the framework of the crystallisation history of the pegmatite, and contributes to an examination of the Jahns–Burnham proposal.Initial crystallisation at Tanco was from the wall rock inwards, producing the relatively unfractionated wall zone (potassium feldspar–quartz-albite-muscovite). Textural evidence, and an upward increase in the level of geochemical fractionation, indicate that much, but not all, of the subsequent crystallisation of the pegmatite was from the base upwards. Inclusions trapped by wall zone and metasomatic wall rock tourmaline indicate that the pegmatite was intruded as a 2 phase alumino-silicate melt/fluid mixture at ∼720°C, with an initial fluid composition of ∼98mol.% H2O (containing 2 equiv. mo1% NaCl) and <2mol% CO2 (containing <5 equiv. mo1% CH4). These observations indicate that both melt and fluid were present from the start of crystallisation (Jahns & Burnham 1969), but show that CO2 and dissolved salts were important additional components of the fluid phase. The bulk of the pegmatite then crystallised in the range 600-470°C from melts and fluids with continued low levels of CO2 (2-3mol.%) and approximately constant salinity (∼7 equiv. wt.% NaCl dissolved in the aqueous phase). Crystal-rich inclusions, which may represent trapped alumino-silicate melts, are present throughout pegmatite crystallisation down to temperatures as low as ∼262°C. The final stages of crystallisation resulted in the formation of the beryl fringe at 291 ± 33°C and the lower part of the quartz zone at 262 ± 29°C. By the later stages the fluid had cooled through an H2O-CO2– dissolved salt solvus resulting in H2O-CO2 phase separation. Gas chromatographic analysis of the fluid components in the vug quartz, beryl fringe and lower part of the quartz zone shows that the inclusions contain H2O, CO2, CH4, N2, CO, Ar, and trace C2H6 in the beryl fringe. Measured CH4:CO2 ratios of 0·0060 (±0·0015) for the beryl fringe (twenty crushes on five samples) and 0·0042 (±0.0021) for the quartz zone (thirty crushes on six samples) yield fO2 estimates of 1×10−36 and 2 × 10−38, respectively, which are just above QFM at these temperatures.

Lithos ◽  
2021 ◽  
Vol 386-387 ◽  
pp. 106001
Author(s):  
Miguel Ángel Galliski ◽  
Albrecht von Quadt ◽  
María Florencia Márquez-Zavalía

2020 ◽  
Vol 20 (4) ◽  
pp. 425-439
Author(s):  
Ali Imamalipour ◽  
Samaneh Barak ◽  
Farzaneh Mami Khalifani

The Tavreh mercury prospect, a listwaenite-type alteration/mineralization system, is located c. 90 km west of Khoy in northwestern Iran. Tavreh is hosted within the Khoy ophiolite zone. Three types of listwaenites have been recognized in the Khoy ophiolite: silica, silica-carbonate and carbonate. Of these three, Hg mineralization at Tavreh is spatially and genetically associated with the silica-type listwaenite, also known as berberite. Alteration and mineralization at Tavreh are restricted to a faulted contact between shale and serpentinite. The Tavreh listwaenite is inferred to form from the hydrothermal alteration of brecciated serpentinite. Major mineralogical changes resulting from this alteration include the decomposition of serpentine-group minerals and the formation of silica phases. In this study, the mass changes of 18 listwaenites from Tavreh were assessed relative to the least altered serpentinites. To illustrate these changes quantitatively a comparative analysis of three different methods of calculating mass change was undertaken using Grant's isocon analysis, MacLean's equation and Gresens’ equation. Results from the three methods are similar. Listwaenite alteration was associated with a large increase in SiO2 (44.4, 36.2, 63.9%, respectively). MgO and loss on ignition were depleted (−34.8, −36.9, −36.6; −8.5, −9.3, −8.3%, respectively) and Al2O3 was relatively unchanged (0.7, 0.6, 0.9%). Mercury is the most enriched rare element in altered rock (375.1, 346.8, 474.6 ppm). Arsenic, Pb, Au and Sb were also enriched. The intensity of mass changes of the various alteration components increases significantly from the serpentinite wall rock towards the listwaenite alteration and the ore-bearing zone. Therefore, the mass balance method can probably be used to locate mineral deposits from a few hundred metres and to explore for blind mineral deposits.


Solid Earth ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 211-223 ◽  
Author(s):  
Emilie Janots ◽  
Alexis Grand'Homme ◽  
Matthias Bernet ◽  
Damien Guillaume ◽  
Edwin Gnos ◽  
...  

Abstract. A multi-method investigation into Lauzière granite, located in the external Belledonne massif of the French Alps, reveals unusually hot hydrothermal conditions in vertical open fractures (Alpine-type clefts). The host-rock granite shows sub-vertical mylonitic microstructures and partial retrogression at temperatures of < 400 ∘C during Alpine tectonometamorphism. Novel zircon fission-track (ZFT) data in the granite give ages at 16.3 ± 1.9 and 14.3 ± 1.6 Ma, confirming that Alpine metamorphism was high enough to reset the pre-Alpine cooling ages and that the Lauzière granite had already cooled below 240–280 ∘C and was exhumed to < 10 km at that time. Novel microthermometric data and chemical compositions of fluid inclusions obtained on millimetric monazite and on quartz crystals from the same cleft indicate early precipitation of monazite from a hot fluid at T > 410 ∘C, followed by a main stage of quartz growth at 300–320 ∘C and 1.5–2.2 kbar. Previous Th-Pb dating of cleft monazite at 12.4 ± 0.1 Ma clearly indicates that this hot fluid infiltration took place significantly later than the peak of the Alpine metamorphism. Advective heating due to the hot fluid flow caused resetting of fission tracks in zircon in the cleft hanging wall, with a ZFT age at 10.3 ± 1.0 Ma. The results attest to the highly dynamic fluid pathways, allowing the circulation of deep mid-crustal fluids, 150–250 ∘C hotter than the host rock, which affect the thermal regime only at the wall rock of the Alpine-type cleft. Such advective heating may impact the ZFT data and represent a pitfall for exhumation rate reconstructions in areas affected by hydrothermal fluid flow.


2013 ◽  
Vol 13 (4) ◽  
pp. 1045-1065 ◽  
Author(s):  
Jie Shen ◽  
Xiaofeng Yang ◽  
Qi Wang

AbstractThe commonly used incompressible phase field models for non-reactive, binary fluids, in which the Cahn-Hilliard equation is used for the transport of phase variables (volume fractions), conserve the total volume of each phase as well as the material volume, but do not conserve the mass of the fluid mixture when densities of two components are different. In this paper, we formulate the phase field theory for mixtures of two incompressible fluids, consistent with the quasi-compressible theory [28], to ensure conservation of mass and momentum for the fluid mixture in addition to conservation of volume for each fluid phase. In this formulation, the mass-average velocity is no longer divergence-free (solenoidal) when densities of two components in the mixture are not equal, making it a compressible model subject to an internal con-straint. In one formulation of the compressible models with internal constraints (model 2), energy dissipation can be clearly established. An efficient numerical method is then devised to enforce this compressible internal constraint. Numerical simulations in confined geometries for both compressible and the incompressible models are carried out using spatially high order spectral methods to contrast the model predictions. Numerical comparisons show that (a) predictions by the two models agree qualitatively in the situation where the interfacial mixing layer is thin; and (b) predictions differ significantly in binary fluid mixtures undergoing mixing with a large mixing zone. The numerical study delineates the limitation of the commonly used incompressible phase field model using volume fractions and thereby cautions its predictive value in simulating well-mixed binary fluids.


2006 ◽  
Vol 42 (1) ◽  
pp. 45-56 ◽  
Author(s):  
D. Soares ◽  
J. Barbosa ◽  
C. Vilarinho

The interactions of copper substrate with titanium-alloyed Sn-Zn eutectic solders have been studied. Two series of experiments have been performed. The first one consisted in differential thermal analyses of Sn-Zn nearly eutectic alloys containing from 1.3 to 2.2 wt. % Ti. Diffusion couples consisted of Cu-wires and Sn-Zn-Ti liquid solders, produced at 250 and 275 OC have been prepared in the second series,. The contact times were up to 3600 s. The contact zones have been characterized by optical and scanning electron microscope. Two layers have been found along the interfaces solid/liquid. The first and the second layers are identical, respectively, with ? and ? phases of the Cu-Zn system. No changes of the chemical compositions were detected for the tested temperatures and reaction times. Continuous parabolic growth of the total diffusion zone thickness with the time of diffusion is observed. The growth is due mainly to one the formed layers (? ) while the thickness of the ?-phase layer, stays almost constant for all tested diffusion times and temperatures.


1999 ◽  
Vol 63 (6) ◽  
pp. 891-900 ◽  
Author(s):  
H. Ishizuka

AbstractPumpellyite has been found in doleritic basalt of a sheeted dyke complex drilled from 2072.1 m below sea floor in DSDP/ODP Hole 504B, south of the Costa Rica Rift, eastern Pacific. It occurs as fine-grained crystal aggregates accompanied by albite, chlorite and chalcopyrite, which partially replace a plagioclase phenocryst (An85–88) that is also associated with primary magnetite. Chemical compositions of the pumpellyite vary antithetically in relation to Fe* and Al as well as Fe* and Mg, indicating the dominant substitution of Fe3+ by Al with the minor substitution of Fe2+ by Mg. Such compositional variations overlap with those of prehnite-pumpellyite facies rocks dredged from other oceanic ridges and intra-oceanic arcs, and those of similar facies rocks from ophiolites, but are aluminous compared with those of zeolite facies metabasites in ophiolites. These observations suggest that the breakdown of the plagioclase phenocryst and magnetite in the presence of a Cu- and S-bearing fluid phase led to the formation of pumpellyite + albite + chlorite + chalcopyrite during oceanic ridge hydrothermal alteration.


1990 ◽  
Vol 54 (376) ◽  
pp. 447-454 ◽  
Author(s):  
Ansom Sebastian ◽  
Martine Lagache

AbstractPollucite is a silicate mineral of the rare element caesium, occurring in granitic pegmatites. Experiments have been carried out at 450, 600, and 750°C, 1.5 kbar, to study the equilibrium between pollucite, albite and the co-existing hydrothermal solution. When pollucite co-exists with albite, the alkaline composition of the solution is buffered. The Cs/Na ratio of the solution has been determined to be 0.11 at 450°C 0.22 at 600°C and 0.23 at 750°C. Pollucite contains about 15 mol.% of sodium, whereas albite is almost purely sodic. In nature, pollucite with more than 82 mol.% caesium has never been found. This can be explained by the absence of solutions in granitic pegmatites having a higher Cs/Na ratio than those determined by us.


Sign in / Sign up

Export Citation Format

Share Document