NONPARAMETRIC NONSTATIONARITY TESTS

2013 ◽  
Vol 30 (1) ◽  
pp. 127-149 ◽  
Author(s):  
Federico M. Bandi ◽  
Valentina Corradi

We propose additive functional-based nonstationarity tests that exploit the different divergence rates of the occupation times of a (possibly nonlinear) process under the null of nonstationarity (stationarity) versus the alternative of stationarity (nonstationarity). We consider both discrete-time series and continuous-time processes. The discrete-time case covers Harris recurrent Markov chains and integrated processes. The continuous-time case focuses on Harris recurrent diffusion processes. Notwithstanding finite-sample adjustments discussed in the paper, the proposed tests are simple to implement and rely on tabulated critical values. Simulations show that their size and power properties are satisfactory. Our robustness to nonlinear dynamics provides a solution to the typical inconsistency problem between assumed linearity of a time series for the purpose of nonstationarity testing and subsequent nonlinear inference.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Caishi Wang ◽  
Jinshu Chen

We aim at characterizing generalized functionals of discrete-time normal martingales. LetM=(Mn)n∈Nbe a discrete-time normal martingale that has the chaotic representation property. We first construct testing and generalized functionals ofMwith an appropriate orthonormal basis forM’s square integrable functionals. Then we introduce a transform, called the Fock transform, for these functionals and characterize them via the transform. Several characterization theorems are established. Finally we give some applications of these characterization theorems. Our results show that generalized functionals of discrete-time normal martingales can be characterized only by growth condition, which contrasts sharply with the case of some continuous-time processes (e.g., Brownian motion), where both growth condition and analyticity condition are needed to characterize generalized functionals of those continuous-time processes.


2019 ◽  
Vol 627 ◽  
pp. A120 ◽  
Author(s):  
Felipe Elorrieta ◽  
Susana Eyheramendy ◽  
Wilfredo Palma

Most time-series models assume that the data come from observations that are equally spaced in time. However, this assumption does not hold in many diverse scientific fields, such as astronomy, finance, and climatology, among others. There are some techniques that fit unequally spaced time series, such as the continuous-time autoregressive moving average (CARMA) processes. These models are defined as the solution of a stochastic differential equation. It is not uncommon in astronomical time series, that the time gaps between observations are large. Therefore, an alternative suitable approach to modeling astronomical time series with large gaps between observations should be based on the solution of a difference equation of a discrete process. In this work we propose a novel model to fit irregular time series called the complex irregular autoregressive (CIAR) model that is represented directly as a discrete-time process. We show that the model is weakly stationary and that it can be represented as a state-space system, allowing efficient maximum likelihood estimation based on the Kalman recursions. Furthermore, we show via Monte Carlo simulations that the finite sample performance of the parameter estimation is accurate. The proposed methodology is applied to light curves from periodic variable stars, illustrating how the model can be implemented to detect poor adjustment of the harmonic model. This can occur when the period has not been accurately estimated or when the variable stars are multiperiodic. Last, we show how the CIAR model, through its state space representation, allows unobserved measurements to be forecast.


2006 ◽  
Vol 43 (04) ◽  
pp. 1044-1052 ◽  
Author(s):  
Nico M. Van Dijk ◽  
Karel Sladký

As an extension of the discrete-time case, this note investigates the variance of the total cumulative reward for continuous-time Markov reward chains with finite state spaces. The results correspond to discrete-time results. In particular, the variance growth rate is shown to be asymptotically linear in time. Expressions are provided to compute this growth rate.


1978 ◽  
Vol 10 (01) ◽  
pp. 85-108 ◽  
Author(s):  
Denis Mollison

Markovian contact processes (mcp's) include some of the commoner models for the spatial spread of population processes, such as the ‘simple’ and ‘general’ epidemics, percolation processes, and birth, death and migration processes. They are here set in a framework which relates them to each other, and to a particular basic model, the contact birth process (cbp); indeed they are defined as modifications of the cbp. The immediate advantage of this is that bounds for the velocity of the cbp, which can be obtained from the linear equation describing its expected numbers (provided the contact distribution has exponentially bounded tail) apply also to general mcp's. Existence of moments (and for some processes their time-derivatives) of St (θ), the distance to the furthest individual in an arbitrary direction θ, can also be deduced whenever the corresponding moment of the contact distribution exists. An important subclass consists of population-monotone mcp's, for which the distributions of St can be shown to be subconvolutive, so that the work of Hammersley (1974) can be applied to obtain convergence theorems for St /t; and these can be extended to convergence of the convex hull of the set of inhabited points. These results are particularly valuable because they apply to some non-linear processes, e.g. the simple epidemic. Some special results on the cbp (Section 6) emphasize the differences between linear and non-linear spatial stochastic processes. Although the paper is written throughout in terms of continuous-time processes, the results on subconvolutive distributions are actually more easily applied in the discrete-time case. (Conversely, the approach used in the accompanying paper by Biggins (pp. 62–84), which is written in terms of discrete-time processes, can be extended to deal also with continuous-time processes.)


2008 ◽  
Vol 5 (25) ◽  
pp. 885-897 ◽  
Author(s):  
Simon Cauchemez ◽  
Neil M Ferguson

We present a new statistical approach to analyse epidemic time-series data. A major difficulty for inference is that (i) the latent transmission process is partially observed and (ii) observed quantities are further aggregated temporally. We develop a data augmentation strategy to tackle these problems and introduce a diffusion process that mimicks the susceptible–infectious–removed (SIR) epidemic process, but that is more tractable analytically. While methods based on discrete-time models require epidemic and data collection processes to have similar time scales, our approach, based on a continuous-time model, is free of such constraint. Using simulated data, we found that all parameters of the SIR model, including the generation time, were estimated accurately if the observation interval was less than 2.5 times the generation time of the disease. Previous discrete-time TSIR models have been unable to estimate generation times, given that they assume the generation time is equal to the observation interval. However, we were unable to estimate the generation time of measles accurately from historical data. This indicates that simple models assuming homogenous mixing (even with age structure) of the type which are standard in mathematical epidemiology miss key features of epidemics in large populations.


1998 ◽  
Vol 7 (4) ◽  
pp. 397-401 ◽  
Author(s):  
OLLE HÄGGSTRÖM

We consider continuous time random walks on a product graph G×H, where G is arbitrary and H consists of two vertices x and y linked by an edge. For any t>0 and any a, b∈V(G), we show that the random walk starting at (a, x) is more likely to have hit (b, x) than (b, y) by time t. This contrasts with the discrete time case and proves a conjecture of Bollobás and Brightwell. We also generalize the result to cases where H is either a complete graph on n vertices or a cycle on n vertices.


Filomat ◽  
2018 ◽  
Vol 32 (8) ◽  
pp. 2813-2824
Author(s):  
Sultan Hussain ◽  
Salman Zeb ◽  
Muhammad Saleem ◽  
Nasir Rehman

We consider discrete time hedging error of the American put option in case of brusque fluctuations in the price of assets. Since continuous time hedging is not possible in practice so we consider discrete time hedging process. We show that if the proportions of jump sizes in the asset price are identically distributed independent random variables having finite moments then the value process of the discrete time hedging uniformly approximates the value process of the corresponding continuous-time hedging in the sense of L1 and L2-norms under the real world probability measure.


2004 ◽  
Vol 41 (03) ◽  
pp. 601-622 ◽  
Author(s):  
Claudia Klüppelberg ◽  
Alexander Lindner ◽  
Ross Maller

We use a discrete-time analysis, giving necessary and sufficient conditions for the almost-sure convergence of ARCH(1) and GARCH(1,1) discrete-time models, to suggest an extension of the ARCH and GARCH concepts to continuous-time processes. Our ‘COGARCH’ (continuous-time GARCH) model, based on a single background driving Lévy process, is different from, though related to, other continuous-time stochastic volatility models that have been proposed. The model generalises the essential features of discrete-time GARCH processes, and is amenable to further analysis, possessing useful Markovian and stationarity properties.


Sign in / Sign up

Export Citation Format

Share Document