SEMIPARAMETRIC INDEPENDENCE TESTING FOR TIME SERIES OF COUNTS AND THE ROLE OF THE SUPPORT

2018 ◽  
Vol 35 (6) ◽  
pp. 1111-1145 ◽  
Author(s):  
David Harris ◽  
Brendan McCabe

This article considers testing for independence in a time series of small counts within an Integer Autoregressive (INAR) model, taking a semiparametric approach that avoids any distributional assumption on the arrivals process of the model. The nature of the testing problem is shown to differ depending on whether or not the support of the arrivals distribution is the full set of natural numbers (as would be the case for Poisson or Negative Binomial distributions for example) or some strict subset of the natural numbers (such as for a Binomial or Uniform distribution). The theory for these two cases is studied separately.For the case where the arrivals have support on the natural numbers, a new asymptotically efficient semiparametric test, the effective score (Neyman-Rao) test, is derived. The semiparametric Likelihood-Ratio, Wald and score tests are shown to be asymptotically equivalent to the effective score test, and hence also asymptotically efficient. Asymptotic relative efficiency calculations demonstrate that the semiparametric effective score test can provide substantial power advantages over the first order autocorrelation coefficient, which is most commonly applied in practice.For the case where the arrivals have support that is a strict subset of the natural numbers, the theory is considerably altered because the support of the observations becomes different under the null and alternative hypotheses. The semiparametric Likelihood-Ratio, Wald and score tests become asymptotically degenerate in this case, while the effective score test remains valid. Remarkably, in this case the effective score test is also found to have power against local alternatives that shrink to the null at the rate T−1. In rare cases where the arrival support is partly or totally known, additional tests exploiting this information are considered.Finite sample properties of the tests in these various cases demonstrate the semiparametric effective score test can provide substantial power advantages over the first order autocorrelation test implied by a parametric Poisson specification. The simulations also reveal situations in which the first order autocorrelation is preferable in finite samples, so a hybrid of the effective score and autocorrelation tests is proposed to capture most of the benefits of each test.

2020 ◽  
Vol 15 (4) ◽  
pp. 335-349
Author(s):  
Eugene Demidenko

Traditionally, asymptotic tests are studied and applied under local alternative. There exists a widespread opinion that the Wald, likelihood ratio, and score tests are asymptotically equivalent. We dispel this myth by showing that These tests have different statistical power in the presence of nuisance parameters. The local properties of the tests are described in terms of the first and second derivative evaluated at the null hypothesis. The comparison of the tests are illustrated with two popular regression models: linear regression with random predictor and logistic regression with binary covariate. We study the aberrant behavior of the tests when the distance between the null and alternative does not vanish with the sample size. We demonstrate that these tests have different asymptotic power. In particular, the score test is generally asymptotically biased but slightly superior for linear regression in a close neighborhood of the null. The power approximations are confirmed through simulations.


1996 ◽  
Vol 12 (3) ◽  
pp. 458-480 ◽  
Author(s):  
Carl W. Helstrom

The efficient method of numerical saddlepoint integration is described and applied to calculating the probability distribution of the maximum likelihood and Yule-Walker estimators of the correlation coefficient a of a first-order autoregressive normal time series with initial value either zero or nonzero when a finite number n of data are at hand. Stationary time series of the same type are also treated. Significance points are computed in a number of examples to show how, as n increases, the finite-sample distributions approach the asymptotic distributions that have appeared in the literature.


2016 ◽  
Vol 33 (3) ◽  
pp. 755-778 ◽  
Author(s):  
David Harris ◽  
Hsein Kew

This paper considers adaptive hypothesis testing for the fractional differencing parameter in a parametric ARFIMA model with unconditional heteroskedasticity of unknown form. A weighted score test based on a nonparametric variance estimator is proposed and shown to be asymptotically equivalent, under the null and local alternatives, to the Neyman-Rao effective score test constructed under Gaussianity and known variance process. The proposed test is therefore asymptotically efficient under Gaussianity. The finite sample properties of the test are investigated in a Monte Carlo experiment and shown to provide potentially large power gains over the usual unweighted long memory test.


2021 ◽  
Vol 10 (4) ◽  
pp. 208
Author(s):  
Christoph Traun ◽  
Manuela Larissa Schreyer ◽  
Gudrun Wallentin

Time series animation of choropleth maps easily exceeds our perceptual limits. In this empirical research, we investigate the effect of local outlier preserving value generalization of animated choropleth maps on the ability to detect general trends and local deviations thereof. Comparing generalization in space, in time, and in a combination of both dimensions, value smoothing based on a first order spatial neighborhood facilitated the detection of local outliers best, followed by the spatiotemporal and temporal generalization variants. We did not find any evidence that value generalization helps in detecting global trends.


Author(s):  
Achim Dörre

AbstractWe study a selective sampling scheme in which survival data are observed during a data collection period if and only if a specific failure event is experienced. Individual units belong to one of a finite number of subpopulations, which may exhibit different survival behaviour, and thus cause heterogeneity. Based on a Poisson process model for individual emergence of population units, we derive a semiparametric likelihood model, in which the birth distribution is modeled nonparametrically and the lifetime distributions parametrically, and define maximum likelihood estimators. We propose a Newton–Raphson-type optimization method to address numerical challenges caused by the high-dimensional parameter space. The finite-sample properties and computational performance of the proposed algorithms are assessed in a simulation study. Personal insolvencies are studied as a special case of double truncation and we fit the semiparametric model to a medium-sized dataset to estimate the mean age at insolvency and the birth distribution of the underlying population.


2021 ◽  
pp. 1-47
Author(s):  
Qianqian Zhu ◽  
Guodong Li

Many financial time series have varying structures at different quantile levels, and also exhibit the phenomenon of conditional heteroskedasticity at the same time. However, there is presently no time series model that accommodates both of these features. This paper fills the gap by proposing a novel conditional heteroskedastic model called “quantile double autoregression”. The strict stationarity of the new model is derived, and self-weighted conditional quantile estimation is suggested. Two promising properties of the original double autoregressive model are shown to be preserved. Based on the quantile autocorrelation function and self-weighting concept, three portmanteau tests are constructed to check the adequacy of the fitted conditional quantiles. The finite sample performance of the proposed inferential tools is examined by simulation studies, and the need for use of the new model is further demonstrated by analyzing the S&P500 Index.


1981 ◽  
Vol 4 (3) ◽  
pp. 675-760
Author(s):  
Grażyna Mirkowska

The aim of propositional algorithmic logic is to investigate the properties of program connectives. Complete axiomatic systems for deterministic as well as for nondeterministic interpretations of program variables are presented. They constitute basic sets of tools useful in the practice of proving the properties of program schemes. Propositional theories of data structures, e.g. the arithmetic of natural numbers and stacks, are constructed. This shows that in many aspects PAL is close to first-order algorithmic logic. Tautologies of PAL become tautologies of algorithmic logic after replacing program variables by programs and propositional variables by formulas. Another corollary to the completeness theorem asserts that it is possible to eliminate nondeterministic program variables and replace them by schemes with deterministic atoms.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4950
Author(s):  
Gianmarco Romano

The moment-based M2M4 signal-to-noise (SNR) estimator was proposed for a complex sinusoidal signal with a deterministic but unknown phase corrupted by additive Gaussian noise by Sekhar and Sreenivas. The authors studied its performances only through numerical examples and concluded that the proposed estimator is asymptotically efficient and exhibits finite sample super-efficiency for some combinations of signal and noise power. In this paper, we derive the analytical asymptotic performances of the proposed M2M4 SNR estimator, and we show that, contrary to what it has been concluded by Sekhar and Sreenivas, the proposed estimator is neither (asymptotically) efficient nor super-efficient. We also show that when dealing with deterministic signals, the covariance matrix needed to derive asymptotic performances must be explicitly derived as its known general form for random signals cannot be extended to deterministic signals. Numerical examples are provided whose results confirm the analytical findings.


Sign in / Sign up

Export Citation Format

Share Document