scholarly journals Seasonal patterns of fine-root productivity and turnover in a tropical savanna of northern Australia

2004 ◽  
Vol 20 (2) ◽  
pp. 221-224 ◽  
Author(s):  
Xiaoyong Chen ◽  
Derek Eamus ◽  
Lindsay B. Hutley

Fine roots and their turnover represent a dynamic aspect of below-ground biomass (BGB) and nutrient capital in forest ecosystems, and account for a significant fraction of net primary productivity (NPP) (Cuevas 1995, Vogt et al. 1990). On a weight basis, coarse roots contribute more to total ecosystem biomass than fine roots, but they account for only a small portion of annual root production (Eamus et al. 2002). Despite the fact that fine roots may compose less than 2% of total ecosystem biomass, they may contribute up to 40% of total ecosystem production (Vogt et al. 1990). Therefore, estimates of root production, like estimates of root biomass, should differentiate between coarse- and fine-root production.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 511a-511
Author(s):  
L.H. Comas ◽  
D.M. Eissenstat ◽  
A.N. Lakso ◽  
R. Dunst

Improved cultural practices in grape require a better understanding of root growth and physiology. Seasonal root dynamics were examined in mature `Concord' vines with balanced or minimal-pruning, and with or without supplemental irrigation in Fredonia, N.Y. Fine roots were continuously produced during the growing season starting in mid-June around time of bloom. Roots began to die in September at verasion. Minimal-pruned vines produced more roots than balanced-pruned vines, with the minimal-pruned/unirrigated vines producing the most roots. Irrigation and pruning delayed fine root production at the beginning of the growing season. Peak fine root flush was 16 June to 21 July 1997 for the minimal-pruned/unirrigated treatment, while peak flush was 7 July to 2 Sept. 1997 for balanced-pruned/irrigated treatment. In minimal-pruned vines, many roots were observed down to depths of 120 cm. In contrast, balanced-pruned vines had very few fine roots deeper than 40 cm. From initial observations, median lifespan of fine roots was 5 to 9.5 weeks, depending on treatment and depth in soil. Fine roots lived longer in the top 15-cm than in the 16- to 30-cm layer of soil in all treatments. Both minimal pruning and irrigation increased root lifespan. Fine roots had the shortest lifespan in the balanced-pruned/unirrigated treatment and the longest lifespan in the minimal-pruned/irrigated treatment.


1987 ◽  
Vol 17 (8) ◽  
pp. 919-928 ◽  
Author(s):  
D. Santantonio ◽  
E. Santantonio

The effects of heavy thinning (60% reduction in basal area) on fine (< 1 mm diam.) and small roots (1–5 mm diam.) were evaluated during the 2nd year following treatment by periodic soil core sampling in a 12-year-old plantation of Pinusradiata D. Don. Data from these samples enabled us to estimate monthly standing crops of live and dead fine roots and seasonal rates of fine-root decomposition. We used a compartment-flow model to estimate production and mortality of fine roots with monthly resolution from these data. The general pattern of production and mortality was modal and out of phase with soil temperature. On an area basis, thinning reduced the overall standing crop of live fine roots from 1.38 to 0.55 Mg/ha; the standing crop of dead fine roots remained unchanged at 4.37 Mg/ha. The standing crop of live small roots declined from 1.03 to 0.54 Mg/ha. Annual production of fine roots was estimated at 2.2 and 1.9 Mg•ha−1•year−1 in the control and thinned treatment, respectively, and mortality was estimated at 2.1 and 2.0 Mg•ha−1•ear−1 in the control and thinned treatment, respectively. Thinning shortened mean fine-root longevity from 6.2 to 2.5 months. With respect to total dry matter production, fine-root production remained a minor component following a heavy thinning. It accounted for only 4.6 and 6.1% of the stand total in the control and thinned treatments, respectively. These results indicate that on a fertile site with a mild climate the opportunity to shift production from fine roots to another component, such as stem wood, is likely to be small.


2020 ◽  
Vol 25 (1) ◽  
pp. 24-29
Author(s):  
Krishna Prasad Bhattarai ◽  
Tej Narayan Mandal ◽  
Tilak Prasad Gautam

The present study was conducted to understand the effect of altitude on the nutrient concentration, nutrient stock, and uptake in the fine root of the Terai Sal forest (TSF) and Hill Sal forest (HSF) in eastern Nepal. Annual mean fine root biomass in 0-30 cm soil depth was found higher in HSF (6.27 Mg ha-1) than TSF (5.05 Mg ha-1). Conversely, fine root production was higher in TSF (4.8 Mg ha-1 y-1) than HSF (4.12 Mg ha-1 y-1). Nitrogen, phosphorus, and potassium content in fine roots were slightly higher in TSF than HSF. Nutrient concentration in fine roots of smaller size (<2 mm diameter) was nearly 1.2 times greater than that of larger size (2–5 mm diameter) in both forests. In HSF total stock of different nutrients (kg ha-1) in fine root was 55.62 N, 4.99 P, and 20.15 K whereas, these values were 49.49 N, 4.14 P, and 19.27 K only in TSF. However, total nutrient uptake (kg ha-1y-1) by fine root (both size classes) was greater in TSF (48.5 N, 4.3 P, and 18.6 K) than HSF (36.9 N, 3.3 P, and 13.5 K). The variability in fine root nutrient dynamics between these two forests was explained by the differences in fine root biomass and production which were influenced by the combined effect of varied altitude and season. The fine root, as being a greater source of organic matter, the information on its nutrient dynamics is inevitable for the management of soil nutrients in the forest ecosystem.


1991 ◽  
Vol 21 (12) ◽  
pp. 1742-1747 ◽  
Author(s):  
Henry L. Gholz ◽  
Wendell P. Cropper Jr.

Starch is the main carbohydrate storage form in conifers and is derived from the translocation of photosynthate (soluble sugars) in the phloem. We examined seasonal patterns in concentrations of both carbohydrate forms in the needles, twigs and branches, stems, and coarse and fine roots of mature Pinuselliottii Engelm. var. elliottii trees in a north Florida plantation. Starch showed marked and similar seasonality in all the tissues, with maxima in the late winter near the time of the inception of new growth in the spring. Sugars showed little seasonality, except in the fine roots. Repeated fertilization had little effect on either sugar or starch concentrations in all tissues. Using published biomass data from these same stands, we estimated that coarse roots store more than half of the starch in these stands over the year, with foliage and fine roots storing less than 5%.


1987 ◽  
Vol 17 (8) ◽  
pp. 909-912 ◽  
Author(s):  
W. A. Kurz ◽  
J. P. Kimmins

Fine root production rates are most commonly calculated from periodic measurements of live and dead fine root biomass. The accuracy of production estimates based on this method is very sensitive to violations of the inherent assumptions, particularly the assumption that the processes of fine root production and mortality are temporally separate. A simple model was used to simulate data for a variety of seasonal patterns of live and dead fine root biomass. Fine root production and mortality rates were calculated from these simulated data using two different computational methods. Comparison of the calculated rates with the known rates (the rates used to generate the seasonal patterns) revealed that violations of the above assumptions can result in inaccurate rate estimates. When fine root production and mortality occur simultaneously within a sampling interval, the calculated production rate will greatly underestimate the true value. Additional error in the rate estimates may result from sampling error associated with the fine root biomass data. The model suggested that sampling error can cause either overestimation or underestimation of fine root production.


1986 ◽  
Vol 16 (3) ◽  
pp. 529-538 ◽  
Author(s):  
Henry L. Gholz ◽  
Laurel C. Hendry ◽  
Wendell P. Cropper Jr.

Seasonal patterns of live, dead, and unknown viability fine (diameter, ≤10 mm) roots of pine and other vegetation in a young and old slash pine stand were sampled using monthly soil coring over a 24-month period. A distinct unimodal pattern for roots <1 mm in diameter in the surface soil was observed. Live roots increased in the spring to a peak in midsummer and then declined. Larger roots and roots deeper in the soil showed less distinct seasonal patterns, although maximum and minimum annual biomass values were sometimes significantly different. Decomposition of fine roots in buried mesh bags averaged 15–20% per year for roots <5 mm in diameter. An analysis of seasonal dynamics and decompositon rates were combined to construct organic matter budgets for the forest floor and soil. Estimated net root production for roots ≤10 mm in diameter was 590 and 626 g m−2 year−1 in the young and old stand, respectively. Root turnover contributed 214 and 452 g m−2 year−1 to detrital pools on the two sites, with the balance of production accumulating as standing root biomass or lost in decomposition. Root production and turnover rates decreased with increasing root diameter; most production was from roots <1 mm. Pine root production was greater and nonpine production was less in the older stand than in the younger stand. Compared with other temperate and boreal forests, root biomass was high and net root production relatively low. The low production:biomass ratio may be characteristic of low latitude (warm) and (or) low nutrient forest types.


Trees ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 571-578 ◽  
Author(s):  
Mizue Ohashi ◽  
Aiko Nakano ◽  
Yasuhiro Hirano ◽  
Kyotaro Noguchi ◽  
Hidetoshi Ikeno ◽  
...  

2020 ◽  
Vol 50 (5) ◽  
pp. 510-518
Author(s):  
Tapani Repo ◽  
Timo Domisch ◽  
Jouni Kilpeläinen ◽  
Sirpa Piirainen ◽  
Raimo Silvennoinen ◽  
...  

Excess water in the rooting zone critically reduces tree growth and may even kill trees; however, the relative importance of damage to roots versus aboveground parts and the time course of damage are not well understood. We studied the dynamics of fine-root growth and mortality of 7-year-old Scots pine (Pinus sylvestris L.) saplings affected by a 5-week period of waterlogging (WL) during the growing season. Two out of six WL-exposed saplings survived the treatment. After 1–2 weeks of WL, the mortality of the first-order short roots (usually mycorrhizas) started to increase and the production of these roots started to decrease. WL decreased the longevity of short and long roots. Total root length (especially of fine roots with a diameter < 0.5 mm), specific fine-root length, total root dry mass (including stump), and reverse-flow root hydraulic conductance were lower in WL saplings than in control saplings at the end of the experiment; however, several root traits were similar in control and surviving WL saplings. Because of the high importance of fine roots for tree growth and carbon sequestration, their responses to elevated water tables should be considered in sustainable use and management of boreal peatland forests, for example, by continuous cover forestry and (or) ditch network maintenance.


Trees ◽  
2020 ◽  
Author(s):  
Ji Young An ◽  
Akira Osawa

Abstract Key message Fine root and litterfall are major contributor of NPP and fine root production may reflect forest productivity in a warm-temperate forest in Japan. Abstract Forest ecosystems play an important role as the major carbon sink on land, with fine root dynamics and litterfall representing major carbon fluxes. The objectives of this research were to estimate NPP including annual fine root production values, to investigate fine root dynamics and the relationships between above– and belowground organs in konara oak (Quercus serrata) and hinoki cypress (Chamaecyparis obtusa) forests. Litterfall was collected seasonally for 1 year from June 2013. The ingrowth core method and the sequential soil core method were applied with a root litterbag experiment to estimate fine root (< 2 mm) production (FRP), mortality (FRM), and decomposition (FRD) for 1 year (from 2013 to 2014), using the continuous inflow estimate method and the simplified decision matrix. The total NPP ranged from 8.2 to 13.9 (t ha− 1 yr− 1), and the sum of aboveground litterfall and FRP accounted for 60% of the total NPP on average, confirming the significance of above- and belowground litter for the forest NPP as a source of detritus for the decomposer system. In hinoki cypress stand, fine root biomass peaked in the end of winter while fine root necromass showed the highest peak in late summer. In konara oak stand, only very fine root (< 0.05 mm) biomass and necromass demonstrated significant seasonal patterns. The seasonal patterns of fine root production did not differ between forest types and root diameter classes. We found a possible relationship between above- and belowground production and fine root production tended to be high in productive forests. This study improves our understanding of different patterns of carbon dynamics between temperate broadleaved and coniferous forest ecosystems.


2009 ◽  
Vol 6 (12) ◽  
pp. 2759-2778 ◽  
Author(s):  
L. E. O. C. Aragão ◽  
Y. Malhi ◽  
D. B. Metcalfe ◽  
J. E. Silva-Espejo ◽  
E. Jiménez ◽  
...  

Abstract. The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.


Sign in / Sign up

Export Citation Format

Share Document