carbohydrate storage
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 27)

H-INDEX

29
(FIVE YEARS 3)

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1064
Author(s):  
Zhen Tian ◽  
Molly Jahn ◽  
Xiaodong Qin ◽  
Hesbon Ochieng Obel ◽  
Fan Yang ◽  
...  

Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan), is a botanical variety of cucumber cultivars native to southwest China that possesses excellent agronomic traits for cucumber improvement. However, breeding utilization of XIS cucumber is limited due to the current poor understanding of its photoperiod-sensitive flowering characteristics. In this study, genetic and transcriptomic analysis were conducted to reveal the molecular basis of photoperiod-regulated flowering in XIS cucumber. A major-effect QTL locus DFF1.1 was identified that controls the days to first flowering (DFF) of XIS cucumbers with a span of 1.38 Mb. Whole-genome re-sequencing data of 9 cucumber varieties with different flowering characteristics in response to photoperiod suggested that CsaNFYA1 was the candidate gene of DFF1.1, which harbored a single non-synonymous mutation in its fifth exon. Transcriptomic analysis revealed the positive roles of auxin and ethylene in accelerating flowering under short-day (SD) light-dark cycles when compared with equal-day/night treatment. Carbohydrate storage and high expression levels of related genes were important reasons explaining early flowering of XIS cucumber under SD conditions. By combining with the RNA-Seq data, the co-expression network suggested that CsaNFYA1 integrated multiple types of genes to regulate the flowering of XIS cucumber. Our findings explain the internal regulatory mechanisms of a photoperiodic flowering pathway. These findings may guide the use of photoperiod shifts to promote flowering of photoperiod-sensitive crops.


2021 ◽  
Author(s):  
Morgan E. Furze ◽  
Dylan K. Wainwright ◽  
Brett A. Huggett ◽  
Thorsten Knipfer ◽  
Andrew J. McElrone ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Surya Banerjee ◽  
Christine Woods ◽  
Micheal Burnett ◽  
Scarlet J. Park ◽  
William W. Ja ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2021 ◽  
Author(s):  
F Curtis Lubbe ◽  
Adam Klimeš ◽  
Jiří Doležal ◽  
Veronika Jandová ◽  
Ondřej Mudrák ◽  
...  

Abstract Background and Aims Although the plant economic spectrum seeks to explain resource allocation strategies, carbohydrate storage is often omitted. Belowground storage organs are the centre of herb perennation, yet little is known about the role of their turnover, anatomy, and carbohydrate storage in relation to the aboveground economic spectrum. Methods We collected aboveground traits associated with the economic spectrum, storage organ turnover traits, storage organ inner structure traits, and storage carbohydrate concentrations for approximately eighty temperate meadow species. Key Results The suites of belowground traits were largely independent from one another, but there was significant correlation between the aboveground traits with both inner structure and storage carbohydrates. Anatomical traits diverged according to leaf nitrogen concentration on one side and vessel area and dry matter content on the other; carbohydrates separated along leaf nitrogen and plant height. Conclusions Contrary to our expectations, aboveground traits and not storage organ turnover were correlated with anatomy and storage carbohydrates. Belowground traits associated with the aboveground economic spectrum also did not fall clearly within the fast-slow economic continuum, thus indicating the presence of a more complicated economic space. Our study implies that the generally over-looked role of storage within the plant economic spectrum represents an important dimension of plant strategy.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008742
Author(s):  
Johannes Asplund-Samuelsson ◽  
Elton P. Hudson

Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to both the emergence of life and to the metabolic engineering challenge of incorporating CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their closest relatives by enrichment analysis, ancestral character estimation, and random forest machine learning, to explore genetic adaptations associated with acquisition of the Calvin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis, and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase, and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epimerase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbohydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photorespiration did not appear to be adapted specifically for the Calvin cycle in the non-cyanobacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-positive organisms was commonly enabled by hydrogenase, and less commonly ammonia monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illustrated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase, which suggests a downregulation of the metabolite arabinose-5-phosphate, which may interfere with the Calvin cycle through enzyme inhibition and substrate competition. Certain domains of unknown function that were found to be important in the analysis may indicate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene ranking provides targets for experiments seeking to improve CO2 fixation, or engineer novel CO2-fixing organisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Surya Banerjee ◽  
Christine Woods ◽  
Micheal Burnett ◽  
Scarlet J. Park ◽  
William W. Ja ◽  
...  

AbstractThe prototypical M13 peptidase, human Neprilysin, functions as a transmembrane “ectoenzyme” that cleaves neuropeptides that regulate e.g. glucose metabolism, and has been linked to type 2 diabetes. The M13 family has undergone a remarkable, and conserved, expansion in the Drosophila genus. Here, we describe the function of Drosophila melanogaster Neprilysin-like 15 (Nepl15). Nepl15 is likely to be a secreted protein, rather than a transmembrane protein. Nepl15 has changes in critical catalytic residues that are conserved across the Drosophila genus and likely renders the Nepl15 protein catalytically inactive. Nevertheless, a knockout of the Nepl15 gene reveals a reduction in triglyceride and glycogen storage, with the effects likely occurring during the larval feeding period. Conversely, flies overexpressing Nepl15 store more triglycerides and glycogen. Protein modeling suggests that Nepl15 is able to bind and sequester peptide targets of catalytically active Drosophila M13 family members, peptides that are conserved in humans and Drosophila, potentially providing a novel mechanism for regulating the activity of neuropeptides in the context of lipid and carbohydrate homeostasis.


2020 ◽  
Vol 44 (1) ◽  
pp. 156-170
Author(s):  
Julieta A. Rosell ◽  
Frida I. Piper ◽  
Cipatli Jiménez‐Vera ◽  
Paula C. B. Vergílio ◽  
Carmen R. Marcati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document