Nitrogen and phosphorus resorption in trees of a neotropical rain forest

2003 ◽  
Vol 19 (4) ◽  
pp. 465-468 ◽  
Author(s):  
José Luis Martínez-Sánchez

In lowland tropical and temperate forests, nitrogen (N) and phosphorus (P) resorption from senesced leaves may reflect a mechanism of conservation of a limiting nutrient (Edwards & Grubb 1982, Killingbeck 1996, Proctor et al. 1989, Scott et al. 1992, Songwe et al. 1997, Vitousek & Sanford 1986). At the ecosystem level it has important implications for element cycling. The nutrients which are resorbed during leaf senescence are directly available for further plant growth, which makes a species less dependent on current nutrient uptake. Nutrients which are not resorbed, however, will be circulated through litterfall in the longer term (Aerts 1996).

Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


1992 ◽  
Vol 62 (3) ◽  
pp. 315-344 ◽  
Author(s):  
Deborah A. Clark ◽  
David B. Clark

2003 ◽  
Vol 19 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Jean-François Mauffrey ◽  
François Catzeflis

Stable isotopes are commonly used in ecological studies to infer food resources (Ambrose & DeNiro 1986, Bocherens et al. 1990,1991,1994;Yoshinaga et al. 1991) since isotopic composition is conserved during the feeding process. Moreover,for herbivorous (sensu lato) species, it is often possible to identify the main resource because different photosynthetic pathways generate different values of carbon isotope ratios (Park & Epstein 1961, Sternberg et al. 1984). This allows the characterization of broad biota such as savannas or forest and discrimination of grazers from sympatric folivorous species (DeNiro & Epstein 1978).


Sign in / Sign up

Export Citation Format

Share Document