scholarly journals Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production

Author(s):  
Ying Wang ◽  
Shuo Wang ◽  
Jingjing Sun ◽  
Hengren Dai ◽  
Beijun Zhang ◽  
...  
2020 ◽  
Author(s):  
Luke Elissiry ◽  
Jingwen Sun ◽  
Ann M. Hirsch ◽  
Chong Liu

Synthetic fertilizer is responsible for the greatly increased crop yields that have enabled worldwide industrialization. However, the production and use of such fertilizers are environmentally unfriendly and unsustainable; synthetic fertilizers are produced via non-renewable resources and fertilizer runoff causes groundwater contamination and eutrophication. A promising alternative to synthetic fertilizer is bacterial inoculation. In this process, a symbiotic relationship is formed between a crop and bacteria species that can fix nitrogen, solubilize phosphorus, and stimulate plant hormone production. The bacteria carrier developed here aims to maintain bacteria viability while in storage, protect bacteria while encapsulated, and provide a sustained and controllable bacterial release. This novel bacterial delivery method utilizes inorganic nanomaterials, silica microbeads, to encapsulate symbiotic bacteria. These microbeads, which were produced with aqueous, non-toxic precursors, are sprayed directly onto crop seeds and solidify on the seeds as a resilient silica matrix. The bacterial release from the carrier was found by submerging coated seeds in solution to simulate degradation in soil environments, measuring the number of bacteria released by the plate count technique, and comparing the carrier to seeds coated only in bacteria. The carrier’s effectiveness to enhance plant growth was determined through greenhouse plant assays with alfalfa (<i>Medicago sativa</i>) plants and the nitrogen-fixing <i>Sinorhizobium meliloti</i> Rm1021 strain. When compared to bacteria-only inoculation, the silica microbead carrier exhibited significantly (P < 0.05) increased holding capacity of viable bacteria and increased plant growth by a similar amount, demonstrating the capability of inorganic nanomaterials for microbial delivery. The carrier presented in this work has potential applications for commercial agriculture and presents an opportunity to further pursue more sustainable agricultural practices.


2020 ◽  
Author(s):  
Luke Elissiry ◽  
Jingwen Sun ◽  
Ann M. Hirsch ◽  
Chong Liu

Synthetic fertilizer is responsible for the greatly increased crop yields that have enabled worldwide industrialization. However, the production and use of such fertilizers are environmentally unfriendly and unsustainable; synthetic fertilizers are produced via non-renewable resources and fertilizer runoff causes groundwater contamination and eutrophication. A promising alternative to synthetic fertilizer is bacterial inoculation. In this process, a symbiotic relationship is formed between a crop and bacteria species that can fix nitrogen, solubilize phosphorus, and stimulate plant hormone production. The bacteria carrier developed here aims to maintain bacteria viability while in storage, protect bacteria while encapsulated, and provide a sustained and controllable bacterial release. This novel bacterial delivery method utilizes inorganic nanomaterials, silica microbeads, to encapsulate symbiotic bacteria. These microbeads, which were produced with aqueous, non-toxic precursors, are sprayed directly onto crop seeds and solidify on the seeds as a resilient silica matrix. The bacterial release from the carrier was found by submerging coated seeds in solution to simulate degradation in soil environments, measuring the number of bacteria released by the plate count technique, and comparing the carrier to seeds coated only in bacteria. The carrier’s effectiveness to enhance plant growth was determined through greenhouse plant assays with alfalfa (<i>Medicago sativa</i>) plants and the nitrogen-fixing <i>Sinorhizobium meliloti</i> Rm1021 strain. When compared to bacteria-only inoculation, the silica microbead carrier exhibited significantly (P < 0.05) increased holding capacity of viable bacteria and increased plant growth by a similar amount, demonstrating the capability of inorganic nanomaterials for microbial delivery. The carrier presented in this work has potential applications for commercial agriculture and presents an opportunity to further pursue more sustainable agricultural practices.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


Science ◽  
1936 ◽  
Vol 83 (2151) ◽  
pp. 284-284 ◽  
Author(s):  
F. F. Nord

2015 ◽  
Vol 17 (6) ◽  
pp. 753-767 ◽  
Author(s):  
Jason Abernathy ◽  
Stéphane Panserat ◽  
Thomas Welker ◽  
Elisabeth Plagne-Juan ◽  
Dionne Sakhrani ◽  
...  

1997 ◽  
Vol 46 (4) ◽  
pp. 425-429 ◽  
Author(s):  
D. E. H. Flanagan ◽  
M. C. Taylor ◽  
V. Parfitt ◽  
R. Mardell ◽  
P. J. Wood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document