Epiphyte assemblages respond to host life-form independently of variation in microclimate in lower montane cloud forest in Panama

2014 ◽  
Vol 30 (6) ◽  
pp. 625-628 ◽  
Author(s):  
Jennifer C. Sanger ◽  
James B. Kirkpatrick

Abstract:We investigated the effects of host tree on epiphyte diversity, controlling for microclimate. We measured the light profiles of the lower trunks of 20 individuals, each from three host groups (tree ferns, dicots, palms) occupying the understorey in a tropical montane forest in Panama. The per cent cover and species richness of vascular and non-vascular epiphytes were surveyed on the lower trunks of each understorey host. Light varied considerably between trees (5–21% total transmitted light) but mean light level did not vary between types of host. Light was not significant as a covariate with host in any model. Tree ferns had higher covers than dicots and palms of filmy ferns (15%, 0.02% and 0.2%), other ferns (7%, 0% and 0.5%) and other vascular epiphytes (16%, 3% and 3.4%), and greater species richness of vascular epiphytes (filmy ferns: 3, 0.4 and 0.5; other ferns: 2, 0.2 and 0; other vascular: 7, 2 and 2). Dicots had a higher cover of liverworts (53%) than palms (18%) and tree ferns (27%). Palms and tree ferns were the compositional extremes. We conclude that the differences in species composition and cover between the three host groups relate better to physical differences between hosts than differences in light climate.

2005 ◽  
Vol 21 (6) ◽  
pp. 651-660 ◽  
Author(s):  
Klaus Mehltreter ◽  
Alejandro Flores-Palacios ◽  
José G. García-Franco

The diversity, abundance and frequency of vascular epiphytes on the lower trunk were compared between two host groups of a Mexican cloud forest: angiosperm trees (n = 72) and tree ferns (n = 28). The bark of the five most frequent host trees and the root mantle of the two tree ferns were analysed for their thickness, water content, water retention capacity and pH. A total of 55 epiphyte species and 910 individuals were found on the 27 host species. On hosts with a dbh range of 5–10 cm, epiphytes were significantly more diverse (4.3±0.9 species per host) and more abundant (12.5±2.2 individuals per host) on tree ferns than on angiosperm trees (1.9±0.2 species per host and 3.9±0.6 individuals per host). However, these differences were not significant for the dbh class of 10–20 cm, because epiphyte numbers increased on angiosperm trees with larger host size, but not in tree ferns. Most epiphyte species had no preference for any host group, but four species were significantly more frequent on tree ferns and two species on angiosperm trees. The higher epiphyte diversity and abundance on tree fern trunks of the smallest dbh class is attributed to their presumably greater age and to two stem characteristics, which differed significantly between host groups, the thicker root mantle and higher water retention capacity of tree ferns. These bark characteristics may favour germination and establishment of epiphytes.


Author(s):  
Hazel Berrios ◽  
Indiana Coronado ◽  
Travis Marsico

Research that has been conducted documenting species richness patterns on tropical mountains has resulted in conflicting observations: monotonic declines with increasing elevation, monotonic increase with increasing elevation, and a mid-elevation ‘bulge.’ Currently, it is unclear if these differences are due to environmental differences associated with the various study areas, the taxonomic groups or ecological groups (e.g., growth form) sampled, or the scale of the study area along an elevation gradient. Because of the difficulty in sampling and identifying canopy-dwelling plants, the number of inventories quantifying tropical epiphytes is relatively limited and recent. In this study, we provide a detailed qualitative and quantitative assessment of the vascular epiphyte flora and its spatial distribution on Volcán Maderas, Isla de Ometepe, Nicaragua, including weather and environmental measurements along the entire elevation gradient of the volcano. We sampled epiphytes in five distinct forest types associated with increasing elevation as follows: dry forest, humid forest, wet forest, cloud forest, and elfin forest Five weather stations were placed along the elevation gradient for us to relate observed patterns to environmental conditions. A hump-shaped species richness pattern was detected for all vascular epiphytes at approximately 1000 m in elevation (cloud forest), yet species abundance increased with increasing elevation. In total we obtained 206 unique species identifications of vascular epiphytes belonging to 26 families and 73 genera. The most species-rich family was the Orchidaceae with 55 species for the entire elevation gradient, followed by Bromeliaceae (29 species), Araceae (23), Polypodiaceae (25), Dryopteridaceae (16), and Piperaceae (11), with all other families respresented by fewer than 10 species each. We found that richness patterns differ phylogenetically within epiphytes, possibly due to different adaptive strategies, and species for the most part appear to be narrowly distributed within specific habitat zones along the elevation gradient.


Bothalia ◽  
2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Moses N. Sainge ◽  
Ngoh M. Lyonga ◽  
Gildas P.T. Mbatchou ◽  
David Kenfack ◽  
Felix Nchu ◽  
...  

Background: The Rumpi Hills Forest Reserve (RHFR) is a montane forest area in south-western Cameroon. Although RHFR is presumed to be rich in biodiversity and vegetation types, little information exists regarding its floristic composition and vegetation patterns.Objectives: Our goal was to characterise vegetation patterns in the reserve and to understand how elevation influences distributions and diversity of species. We aimed to provide a first detailed plant species inventory for this important forest area, as well as basic information on forest structure.Method: We characterised floristic composition and vegetation patterns of the reserve in 25 1-ha plots along an elevational gradient from 50 m to 1778 m. In each plot, trees and lianas of diameter at breast height (dbh) ≥ 10 cm were measured; shrubs 10 cm were measured in nested plots of 0.01 ha.Results: In all, 16 761 trees, shrubs and lianas with dbh ≥ 1 cm were censused, representing 71 families, 279 genera and 617 morphospecies. Floristic composition ranged from 94 to 132 species, with a mean of 117.5 species per hectare in lowland forest (50 m – 200 m) and 36–41 species, with a mean of 38.5 species per hectare in montane cloud forest (1600 m – 1778 m) near the summit of Mount Rata. Two-way indicator species analysis classified the 25 plots into six vegetation types corresponding to lowland evergreen rainforest, lowland evergreen rainforest on basalt rocks, middle-elevation evergreen forest, submontane forest, transitional submontane forest and montane cloud forest. In all, 0.006% of the reserve was included in our sample plots. Detrended correspondence analysis highlighted the importance of elevation in shaping vegetation patterns.Conclusion: The RHFR is composed of different vegetation types, which show impressive variation in terms of structure, species composition and diversity. The detailed, fine-scale inventory data obtained in this study could be useful in planning efficient management of this and other montane tropical forests.


Phytotaxa ◽  
2021 ◽  
Vol 503 (1) ◽  
pp. 1-124
Author(s):  
ADOLFO ESPEJO-SERNA ◽  
ANA ROSA LÓPEZ-FERRARI ◽  
ANICETO MENDOZA-RUIZ ◽  
JAVIER GARCÍA-CRUZ ◽  
JACQUELINE CEJA-ROMERO ◽  
...  

The first complete checklist of the Mexican vascular epiphytes is presented, accompanied by data relating to its geographical distribution by state, elevational range, endemism, life form and type of vegetation in which each species can be found. Based on the review of herbarium specimens and specialized literature, as well as in the collection of botanical material in several regions of the country, we determined that the vascular epiphytes of Mexico are integrated by 24 orders, 37 families, 253 genera, and 1,813 species, of which 583 are endemic to the country. The families with the highest specific richness are Orchidaceae, Bromeliaceae, Polypodiaceae, and Piperaceae, while the genera with the highest number of taxa are Tillandsia, Epidendrum, and Peperomia. Only one gymnosperm, Ceratozamia tenuis, was registered as epiphyte. The types of vegetation that harbor the greatest richness are the cloud forest with 1,079 species and the Quercus forest with 837. One hundred eighty-six species are found in some category of the NOM-059-SEMARNAT-2010.


2005 ◽  
Vol 21 (5) ◽  
pp. 549-557 ◽  
Author(s):  
Matthew Guy Letts ◽  
Mark Mulligan

Photosynthesis was limited by low-intensity photosynthetically active radiation (PAR) and leaf wetness in a lower montane cloud forest (LMCF) of Cauca, Colombia. Mean PAR intensity remained below the saturation level for leaf-scale net photosynthesis (Pn) throughout the solar day during the wet season and for most of the solar day during the dry season. PAR represented a smaller fraction of total solar radiation (K↓) in LMCF than in lowland rain forest (LRF). In LMCF trees and shrubs, mean PAR-saturated Pn ranged from 4.3–10.6 μmol C m−2 s−1 at 1450 m, and from 3.5–10.2 μmol C m−2 s−1 at 2150 m. Pn was reduced by abaxial wetness in leaves of some trees and shrubs, and eliminated in others. This study indicates that persistent cloudiness and interception of cloud water by leaves limit LMCF productivity.


2008 ◽  
Vol 24 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Satomi Shiodera ◽  
Joeni S. Rahajoe ◽  
Takashi Kohyama

Abstract:The relationship between leaf longevity and other leaf traits was compared among different life-form categories (trees, herbs, climbers and epiphytes) of 101 plant species in a tropical montane forest on Mt. Halimun, West Java, Indonesia. We applied the Cox proportional hazards regression to estimate the leaf longevity of each species from 30 mo of census data. We examined whether estimated longevity was explained by either species life-form categories, taxonomic groupings (eudicots, monocots, magnoliids and chloranthales, and ferns) or such leaf traits as leaf area, leaf mass per area (LMA), mass-based leaf nitrogen, penetrometer reading, condensed-tannin-free total phenolics and condensed tannin. There was a wide-ranged interspecific variation in leaf longevity, mostly 10–50 mo, similarly across life-form categories. LMA showed a strong positive influence on leaf longevity. We found that relationships between leaf longevity and some leaf traits were different among various life forms. Trees tended to have high LMA, while climbers tended to have low LMA at the same leaf longevity. We hypothesize that such difference among life forms reflects shoot architecture characteristics. Multi-shoot trees with branching architecture need to have self-supporting leaves, whereas semi-epiphytic climbers can maintain relatively low biomass investment to leaves hanging or relying upon the mechanical support from host plants.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lawrence H. Tanner ◽  
Megan T. Wilckens ◽  
Morgan A. Nivison ◽  
Katherine M. Johnson

We measured carbon stocks at two forest reserves in the cloud forest region of Monteverde, comparing cleared land, experimental secondary forest plots, and mature forest at each location to assess the effectiveness of reforestation in sequestering biomass and soil carbon. The biomass carbon stock measured in the mature forest at the Monteverde Institute is similar to other measurements of mature tropical montane forest biomass carbon in Costa Rica. Local historical records and the distribution of large trees suggest a mature forest age of greater than 80 years. The forest at La Calandria lacks historical documentation, and dendrochronological dating is not applicable. However, based on the differences in tree size, above-ground biomass carbon, and soil carbon between the Monteverde Institute and La Calandria sites, we estimate an age difference of at least 30 years of the mature forests. Experimental secondary forest plots at both sites have accumulated biomass at lower than expected rates, suggesting local limiting factors, such as nutrient limitation. We find that soil carbon content is primarily a function of time and that altitudinal differences between the study sites do not play a role.


2019 ◽  
Vol 265 ◽  
pp. 359-369 ◽  
Author(s):  
Paulo R.L. Bittencourt ◽  
Fernanda de V. Barros ◽  
Cleiton B. Eller ◽  
Caroline S. Müller ◽  
Rafael S. Oliveira

Sign in / Sign up

Export Citation Format

Share Document