Artificial intellugence and knowledge based systems in molecular biology

1994 ◽  
Vol 9 (3) ◽  
pp. 287-300
Author(s):  
John Fox ◽  
Christopher J. Rawlings

AbstractOver the last ten years, molecular biologists and computer scientists have experimented with various artificial intelligence techniques, notably knowledge based and expert systems, qualitative simulation, natural language processing and various machine learning techniques. These techniques have been applied to problems in molecular data analysis, construction of advanced databases and modelling of biological systems. Practical results are now being obtained, notably in the representation and recognition of genetically significant structures, the assembly of genetic maps and prediction of the structure of complex molecules such as proteins. The paper outlines the principal methods used, surveys the findings to date, and identifies promising trends and current limitations.

1994 ◽  
Vol 344 (1310) ◽  
pp. 353-363 ◽  

Over the past ten years, molecular biologists and computer scientists have experimented with various computational methods developed in artificial intelligence (AI). AI research has yielded a number of novel technologies, which are typified by an emphasis on symbolic (non-numerical) programming methods aimed at problems which are not amenable to classical algorithmic solutions. Prominent examples include knowledge-based and expert systems, qualitative simulation and artificial neural networks and other automated learning techniques. These methods have been applied to problems in data analysis, construction of advanced databases and modelling of biological systems. Practical results are now being obtained, notably in the recognition of active genes in genomic sequences, the assembly of physical and genetic maps and protein structure prediction. This paper outlines the principal methods, surveys the findings to date, and identifies the promising trends and current limitations.


Author(s):  
Prakhar Mehrotra

The objective of this chapter is to discuss the integration of advancements made in the field of artificial intelligence into the existing business intelligence tools. Specifically, it discusses how the business intelligence tool can integrate time series analysis, supervised and unsupervised machine learning techniques and natural language processing in it and unlock deeper insights, make predictions, and execute strategic business action from within the tool itself. This chapter also provides a high-level overview of current state of the art AI techniques and provides examples in the realm of business intelligence. The eventual goal of this chapter is to leave readers thinking about what the future of business intelligence would look like and how enterprise can benefit by integrating AI in it.


2017 ◽  
Vol Special Issue on... (Project presentations) ◽  
Author(s):  
Pramit Chaudhuri ◽  
Joseph P. Dexter

This paper describes the Quantitative Criticism Lab, a collaborative initiative between classicists, quantitative biologists, and computer scientists to apply ideas and methods drawn from the sciences to the study of literature. A core goal of the project is the use of computational biology, natural language processing, and machine learning techniques to investigate authorial style, intertextuality, and related phenomena of literary significance. As a case study in our approach, here we review the use of sequence alignment, a common technique in genomics and computational linguistics, to detect intertextuality in Latin literature. Sequence alignment is distinguished by its ability to find inexact verbal similarities, which makes it ideal for identifying phonetic echoes in large corpora of Latin texts. Although especially suited to Latin, sequence alignment in principle can be extended to many other languages.


Author(s):  
Prakhar Mehrotra

The objective of this chapter is to discuss the integration of advancements made in the field of artificial intelligence into the existing business intelligence tools. Specifically, it discusses how the business intelligence tool can integrate time series analysis, supervised and unsupervised machine learning techniques and natural language processing in it and unlock deeper insights, make predictions, and execute strategic business action from within the tool itself. This chapter also provides a high-level overview of current state of the art AI techniques and provides examples in the realm of business intelligence. The eventual goal of this chapter is to leave readers thinking about what the future of business intelligence would look like and how enterprise can benefit by integrating AI in it.


Author(s):  
Jyoti Dabass ◽  
Bhupender Singh Dabass

Over the years, artificial intelligence (AI) is spreading its roots in different areas by utilizing the concept of making the computers learn and handle complex tasks that previously require substantial laborious tasks by human beings. With better accuracy and speed, AI is helping lawyers to streamline work processing. New legal AI software tools like Catalyst, Ross intelligence, and Matlab along with natural language processing provide effective quarrel resolution, better legal clearness, and superior admittance to justice and fresh challenges to conventional law firms providing legal services using leveraged cohort correlate model. This paper discusses current applications of legal AI and suggests deep learning and machine learning techniques that can be applied in future to simplify the cumbersome legal tasks.


Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 462
Author(s):  
G Krishna Chaitanya ◽  
Dinesh Reddy Meka ◽  
Vakalapudi Surya Vamsi ◽  
M V S Ravi Karthik

Sentiment or emotion behind a tweet from Twitter or a post from Facebook can help us answer what opinions or feedback a person has. With the advent of growing user-generated blogs, posts and reviews across various social media and online retails, calls for an understanding of these afore mentioned user data acts as a catalyst in building Recommender systems and drive business plans. User reviews on online retail stores influence buying behavior of customers and thus complements the ever-growing need of sentiment analysis. Machine Learning helps us to read between the lines of tweets by proving us with various algorithms like Naïve Bayes, SVM, etc. Sentiment Analysis uses Machine Learning and Natural Language Processing (NLP) to extract, classify and analyze tweets for sentiments (emotions). There are various packages and frameworks in R and Python that aid in Sentiment Analysis or Text Mining in general. 


Sign in / Sign up

Export Citation Format

Share Document