Two definitions of fractional dimension

Author(s):  
Claude Tricot

The main properties of the Hausdorff dimension, here denoted by dim, areIn ℝp, in variance under a group Н of homeomorphisms: ∀HεH, dim О H = dim. The definition of H, introduced in (15) and (16), is recalled in § 2.

2013 ◽  
Vol 78 (4) ◽  
pp. 1229-1246 ◽  
Author(s):  
Ian Herbert

AbstractWe examine a definition of the mutual information of two reals proposed by Levin in [5]. The mutual information iswhereK(·) is the prefix-free Kolmogorov complexity. A realAis said to have finite self-information ifI (A : A)is finite. We give a construction for a perfect Π10class of reals with this property, which settles some open questions posed by Hirschfeldt and Weber. The construction produces a perfect set of reals withK(σ)≤+KA(σ)+f (σ)for any given Δ20fwith a particularly nice approximation and for a specific choice of f it can also be used to produce a perfect Π10set of reals that are low for effective Hausdorff dimension and effective packing dimension. The construction can be further adapted to produce a single perfect set of reals that satisfyK(σ)≤+KA(σ)+f (σ)for allfin a ‘nice’ class of Δ20functions which includes all Δ20orders.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1546
Author(s):  
Mohsen Soltanifar

How many fractals exist in nature or the virtual world? In this paper, we partially answer the second question using Mandelbrot’s fundamental definition of fractals and their quantities of the Hausdorff dimension and Lebesgue measure. We prove the existence of aleph-two of virtual fractals with a Hausdorff dimension of a bi-variate function of them and the given Lebesgue measure. The question remains unanswered for other fractal dimensions.


2012 ◽  
Vol 96 (536) ◽  
pp. 213-220
Author(s):  
Harlan J. Brothers

Pascal's triangle is well known for its numerous connections to probability theory [1], combinatorics, Euclidean geometry, fractal geometry, and many number sequences including the Fibonacci series [2,3,4]. It also has a deep connection to the base of natural logarithms, e [5]. This link to e can be used as a springboard for generating a family of related triangles that together create a rich combinatoric object.2. From Pascal to LeibnizIn Brothers [5], the author shows that the growth of Pascal's triangle is related to the limit definition of e.Specifically, we define the sequence sn; as follows [6]:


1995 ◽  
Vol 15 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Irene Hueter ◽  
Steven P. Lalley

Let A1, A2,…,Ak be a finite set of contractive, affine, invertible self-mappings of R2. A compact subset Λ of R2 is said to be self-affine with affinitiesA1, A2,…,Ak ifIt is known [8] that for any such set of contractive affine mappings there is a unique (compact) SA set with these affinities. When the affine mappings A1, A2,…,Ak are similarity transformations, the set Λ is said to be self-similar. Self-similar sets are well understood, at least when the images Ai(Λ) have ‘small’ overlap: there is a simple and explicit formula for the Hausdorff and box dimensions [12, 10]; these are always equal; and the δ-dimensional Hausdorff measure of such a set (where δ is the Hausdorff dimension) is always positive and finite.


1963 ◽  
Vol 14 (1) ◽  
pp. 75-104 ◽  
Author(s):  
G. J. Hancock

SummaryThe validity and applicability of the static margin (stick fixed) Kn,where as defined by Gates and Lyon is shown to be restricted to the conventional flexible aircraft. Alternative suggestions for the definition of static margin are put forward which can be equally applied to the conventional flexible aircraft of the past and the integrated flexible aircraft of the future. Calculations have been carried out on simple slender plate models with both linear and non-linear aerodynamic forces to assess their static stability characteristics.


1987 ◽  
Vol 39 (4) ◽  
pp. 784-793 ◽  
Author(s):  
Michael J. Kallaher

Let (Q, +, ·) be a finite quasifield of dimension d over its kernel K = GF(q), where q = pk with p a prime and k ≧ 1. (See p. 18-22 and p. 74 of [7] or Section 5 of [9] for the definition of quasifield.) For the remainder of this article we will follow standard conventions and omit, whenever possible, the binary operations + and · in discussing a quasifield. For example, the notation Q will be used in place of the triple (Q, +, ·) and Q* will be used to represent the multiplicative loop (Q − {0}, ·).Let m be a non-zero element of the quasifield Q; the right multiplicative mapping ρm:Q → Q is defined by1


1957 ◽  
Vol 9 ◽  
pp. 459-464 ◽  
Author(s):  
P. G. Rooney

The inversion theory of the Gauss transformation has been the subject of recent work by several authors. If the transformation is defined by1.1,then operational methods indicate that,under a suitable definition of the differential operator.


1985 ◽  
Vol 37 (4) ◽  
pp. 664-681 ◽  
Author(s):  
Zoltán Magyar ◽  
Zoltán Sebestyén

The theory of noncommutative involutive Banach algebras (briefly Banach *-algebras) owes its origin to Gelfand and Naimark, who proved in 1943 the fundamental representation theorem that a Banach *-algebra with C*-condition(C*)is *-isomorphic and isometric to a norm-closed self-adjoint subalgebra of all bounded operators on a suitable Hilbert space.At the same time they conjectured that the C*-condition can be replaced by the B*-condition.(B*)In other words any B*-algebra is actually a C*-algebra. This was shown by Glimm and Kadison [5] in 1960.


1971 ◽  
Vol 23 (3) ◽  
pp. 445-450 ◽  
Author(s):  
L. Terrell Gardner

0. In [3], Fell introduced a topology on Rep (A,H), the collection of all non-null but possibly degenerate *-representations of the C*-algebra A on the Hilbert space H. This topology, which we will call the Fell topology, can be described by giving, as basic open neighbourhoods of π0 ∈ Rep(A, H), sets of the formwhere the ai ∈ A, and the ξj ∈ H(π0), the essential space of π0 [4].A principal result of [3, Theorem 3.1] is that if the Hilbert dimension of H is large enough to admit all irreducible representations of A, then the quotient space Irr(A, H)/∼ can be identified with the spectrum (or “dual“) Â of A, in its hull-kernel topology.


2019 ◽  
Vol 85 (1) ◽  
pp. 486-510
Author(s):  
RUPERT HÖLZL ◽  
WOLFGANG MERKLE ◽  
JOSEPH MILLER ◽  
FRANK STEPHAN ◽  
LIANG YU

AbstractWe prove that the continuous function${\rm{\hat \Omega }}:2^\omega \to $ that is defined via$X \mapsto \mathop \sum \limits_n 2^{ - K\left( {Xn} \right)} $ for all $X \in {2^\omega }$ is differentiable exactly at the Martin-Löf random reals with the derivative having value 0; that it is nowhere monotonic; and that $\mathop \smallint \nolimits _0^1{\rm{\hat{\Omega }}}\left( X \right)\,{\rm{d}}X$ is a left-c.e. $wtt$-complete real having effective Hausdorff dimension ${1 / 2}$.We further investigate the algorithmic properties of ${\rm{\hat{\Omega }}}$. For example, we show that the maximal value of ${\rm{\hat{\Omega }}}$ must be random, the minimal value must be Turing complete, and that ${\rm{\hat{\Omega }}}\left( X \right) \oplus X{ \ge _T}\emptyset \prime$ for every X. We also obtain some machine-dependent results, including that for every $\varepsilon > 0$, there is a universal machine V such that ${{\rm{\hat{\Omega }}}_V}$ maps every real X having effective Hausdorff dimension greater than ε to a real of effective Hausdorff dimension 0 with the property that $X{ \le _{tt}}{{\rm{\hat{\Omega }}}_V}\left( X \right)$; and that there is a real X and a universal machine V such that ${{\rm{\Omega }}_V}\left( X \right)$ is rational.


Sign in / Sign up

Export Citation Format

Share Document