A Choquet theorem for general subspaces of vector-valued functions

1985 ◽  
Vol 98 (2) ◽  
pp. 323-326 ◽  
Author(s):  
Paulette Saab ◽  
Michel Talagrand

Let X be a compact Hausdorff space, let E be a (real or complex) Banach space, and let C(X, E) stand for the Banach space of all continuous E-valued functions defined on X under the supremum norm. If A is an arbitrary linear subspace of C(X, E), then it is shown that each bounded linear functional l on A can be represented by a boundary E*-valued vector measure μ on X that has the same norm as l. This result constitutes an extension to vector-valued functions of the so-called analytic version of Choquet's integral representation theorem.

1991 ◽  
Vol 33 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Paulette Saab ◽  
Brenda Smith

Let Ω: be a compact Hausdorff space, let E be a Banach space, and let C(Ω, E) stand for the Banach space of continuous E-valued functions on Ω under supnorm. It is well known [3, p. 182] that if F is a Banach space then any bounded linear operator T:C(Ω, E)→ F has a finitely additive vector measure G defined on the σ-field of Borel subsets of Ω with values in the space ℒ(E, F**) of bounded linear operators from E to the second dual F** of F. The measure G is said to represent T. The purpose of this note is to study the interplay between certain properties of the operator T and properties of the representing measure G. Precisely, one of our goals is to study when one can characterize nuclear operators in terms of their representing measures. This is of course motivated by a well-known theorem of L. Schwartz [5] (see also [3, p. 173]) concerning nuclear operators on spaces C(Ω) of continuous scalar-valued functions. The study of nuclear operators on spaces C(Ω, E) of continuous vector-valued functions was initiated in [1], where the author extended Schwartz's result in case E* has the Radon-Nikodym property. In this paper, we will show that the condition on E* to have the Radon-Nikodym property is necessary to have a Schwartz's type theorem. This leads to a new characterization of dual spaces E* with the Radon-Nikodym property. In [2], it was shown that if T:C(Ω, E)→ F is nuclear than its representing measure G takes its values in the space (E, F) of nuclear operators from E to F. One of the results of this paper is that if T:C(Ω, E)→ F is nuclear then its representing measure G is countably additive and of bounded variation as a vector measure taking its values in (E, F) equipped with the nuclear norm. Finally, we show by easy examples that the above mentioned conditions on the representing measure G do not characterize nuclear operators on C(Ω, E) spaces, and we also look at cases where nuclear operators are indeed characterized by the above two conditions. For all undefined notions and terminologies, we refer the reader to [3].


Author(s):  
Fernando Bombal ◽  
Pilar Cembranos

Let K be a compact Hausdorff space and E, F Banach spaces. We denote by C(K, E) the Banach space of all continuous. E-valued functions defined on K, with the supremum norm. It is well known ([6], [7]) that every operator (= bounded linear operator) T from C(K, E) to F has a finitely additive representing measure m of bounded semi-variation, defined on the Borel σ-field Σ of K and with values in L(E, F″) (the space of all operators from E into the second dual of F), in such a way thatwhere the integral is considered in Dinculeanu's sense.


1982 ◽  
Vol 25 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Paulette Saab

AbstractIn this paper we show that if X is a compact Hausdorff space, A is an arbitrary linear subspace of C(X, C), and if E is a Banach space, then each element L of (A ⊗ E)* can be represented by a boundary E*-valued vector measure of the same norm as L.


1983 ◽  
Vol 6 (4) ◽  
pp. 705-713
Author(s):  
I. E. Leonard ◽  
K. F. Taylor

The points of Gateaux and Fréchet differentiability of the norm inC(T,E)are obtained, whereTis a locally compact Hausdorff space andEis a real Banach space. Applications of these results are given to the spaceℓ∞(E)of all bounded sequences inEand to the spaceB(ℓ1,E)of all bounded linear operators fromℓ1intoE


2001 ◽  
Vol 64 (2) ◽  
pp. 445-456 ◽  
Author(s):  
A. R. VILLENA

Let Ω be a topological space without isolated points, let E be a topological linear space which is continuously embedded into a product of countably boundedly generated topological linear spaces, and let X be a linear subspace of C(Ω, E). If a ∈ C(Ω) is not constant on any open subset of Ω and aX ⊂ X, then it is shown that there is at most one F-space topology on X that makes the multiplication by a continuous. Furthermore, if [Ufr ] is a subset of C(Ω) which separates strongly the points of Ω and [Ufr ]X ⊂ X, then it is proved that there is at most one F-space topology on X that makes the multiplication by a continuous for each a ∈ [Ufr ].These results are applied to the study of the uniqueness of the F-space topology and the continuity of translation invariant operators on the Banach space L1(G, E) for a noncompact locally compact group G and a Banach space E. Furthermore, the problems of the uniqueness of the F-algebra topology and the continuity of epimorphisms and derivations on F-algebras and some algebras of vector-valued functions are considered.


1983 ◽  
Vol 28 (2) ◽  
pp. 175-186 ◽  
Author(s):  
Pilar Cembranos

Let K be a compact Hausdorff space and let E be a Banach space. We denote by C(K, E) the Banach space of all E-valued continuous functions defined on K, endowed with the supremum norm.Recently, Talagrand [Israel J. Math.44 (1983), 317–321] constructed a Banach space E having the Dunford-Pettis property such that C([0, 1], E) fails to have the Dunford-Pettis property. So he answered negatively a question which was posed some years ago.We prove in this paper that for a large class of compacts K (the scattered compacts), C(K, E) has either the Dunford-Pettis property, or the reciprocal Dunford-Pettis property, or the Dieudonné property, or property V if and only if E has the same property.Also some properties of the operators defined on C(K, E) are studied.


1990 ◽  
Vol 32 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Muneo Chō

In this paper we shall examine the relationship between the numerical ranges and the spectra for semi-normal operators on uniformly smooth spaces.Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. A linear functional F on B(X) is called state if ∥F∥ = F(I) = 1. When x ε X with ∥x∥ = 1, we denoteD(x) = {f ε X*:∥f∥ = f(x) = l}.


2011 ◽  
Vol 84 (1) ◽  
pp. 44-48 ◽  
Author(s):  
MICHAEL G. COWLING ◽  
MICHAEL LEINERT

AbstractA submarkovian C0 semigroup (Tt)t∈ℝ+ acting on the scale of complex-valued functions Lp(X,ℂ) extends to a semigroup of operators on the scale of vector-valued function spaces Lp(X,E), when E is a Banach space. It is known that, if f∈Lp(X,ℂ), where 1<p<∞, then Ttf→f pointwise almost everywhere. We show that the same holds when f∈Lp(X,E) .


1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


Sign in / Sign up

Export Citation Format

Share Document