A generalized Bernstein approximation theorem

1988 ◽  
Vol 104 (2) ◽  
pp. 317-330 ◽  
Author(s):  
João B. Prolla

A celebrated theorem of Weierstrass states that any continuous real-valued function f defined on the closed interval [0, 1] ⊂ ℝ is the limit of a uniformly convergent sequence of polynomials. One of the most elegant and elementary proofs of this classic result is that which uses the Bernstein polynomials of fone for each integer n ≥ 1. Bernstein's Theorem states that Bn(f) → f uniformly on [0, 1] and, since each Bn(f) is a polynomial of degree at most n, we have as a consequence Weierstrass' theorem. See for example Lorentz [9]. The operator Bn, defined on the space C([0, 1]; ℝ) with values in the vector subspace of all polynomials of degree at most n has the property that Bn(f) ≥ 0 whenever f ≥ 0. Thus Bernstein's Theorem also establishes the fact that each positive continuous real-valued function on [0, 1] is the limit of a uniformly convergent sequence of positive polynomials. This raises the following natural question: consider a compact Hausdorff space X and the convex cone C+(X):= {f ∈ C(X; ℝ); f ≥ 0}. Now the analogue of Bernstein's Theorem would be a theorem stating when a convex cone contained in C+(X) is dense in it. More generally, one raises the question of describing the closure of a convex cone contained in C(X; ℝ), and, in particular, the closure of A+:= {f ∈ A; f ≥ 0}, where A is a subalgebra of C(X; ℝ).

1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


1982 ◽  
Vol 34 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Eric Sawyer

The main purpose of this note is to prove a special case of the following conjecture.Conjecture. If F is holomorphic on the unit ball Bn in Cn and has positive real part, then F is in Hp(Bn) for 0 < p < ½(n + 1).Here Hp(Bn) (0 < p < ∞) denote the usual Hardy spaces of holomorphic functions on Bn. See below for definitions. We remark that the conjecture is known for 0 < p < 1 and that some evidence for it already exists in the literature; for example [1, Theorems 3.11 and 3.15] where it is shown that a particular extreme element of the convex cone of functionsis in Hp(B2) for 0 < p < 3/2.


1975 ◽  
Vol 19 (3) ◽  
pp. 291-300 ◽  
Author(s):  
N. J. Kalton

Let S be a compact Hausdorff space and let Φ: C(S)→E be a linear operator defined on the space of real-valued continuous functions on S and taking values in a (real) topological vector space E. Then Φ is called exhaustive (7) if given any sequence of functions fn ∈ C(S) such that fn ≧ 0 andthen Φ(fn)→0 If E is complete then it was shown in (7) that exhaustive maps are precisely those which possess regular integral extensions to the space of bounded Borel functions on S; this is equivalent to possessing a representationwhere μ is a regular countably additive E-valued measure defined on the σ-algebra of Borel subsets of S.


1982 ◽  
Vol 34 (3) ◽  
pp. 673-685
Author(s):  
Donna Kumagai

Let A be a uniform algebra on a compact Hausdorff space X. The spectrum, or the maximal ideal space, MA, of A is given byWe define the measure spectrum, SA, of A bySA is the set of all representing measures on X for all Φ ∈ MA. (A representing measure for Φ ∈ MA is a probability measure μ on X satisfyingThe concept of representing measure continues to be an effective tool in the study of uniform algebras. See for example [12, Chapters 2 and 3], [5, pp. 15-22] and [3]. Most of the known results on the subject of representing measures, however, concern measures associated with a single homomorphism.


1966 ◽  
Vol 62 (4) ◽  
pp. 649-666 ◽  
Author(s):  
G. A. Reid

The Stone-Weierstrass theorem gives very simple necessary and sufficient conditions for a subset A of the algebra of all real-valued continuous functions on the compact Hausdorff space X to generate a subalgebra dense in namely, this is so if and only if the functions of A strongly separate the points of X, in other words given any two distinct points of X there exists a function in A taking different values at these points, and given any point of X there exists a function in A non-zero there. In the case of the algebra of all complex-valued continuous functions on X, the same result holds provided that we consider the subalgebra generated by A together with Ā, the set of complex conjugates of the functions in A.


2014 ◽  
Vol 8 (1) ◽  
pp. 178-191 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
DAVID GABELAIA ◽  
JOEL LUCERO-BRYAN

AbstractIt is a classic result (McKinsey & Tarski, 1944; Rasiowa & Sikorski, 1963) that if we interpret modal diamond as topological closure, then the modal logic of any dense-in-itself metric space is the well-known modal system S4. In this paper, as a natural follow-up, we study the modal logic of an arbitrary metric space. Our main result establishes that modal logics arising from metric spaces form the following chain which is order-isomorphic (with respect to the ⊃ relation) to the ordinal ω + 3:$S4.Gr{z_1} \supset S4.Gr{z_2} \supset S4.Gr{z_3} \supset \cdots \,S4.Grz \supset S4.1 \supset S4.$It follows that the modal logic of an arbitrary metric space is finitely axiomatizable, has the finite model property, and hence is decidable.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Xuli Han

A symmetric basis of trigonometric polynomial space is presented. Based on the basis, symmetric trigonometric polynomial approximants like Bernstein polynomials are constructed. Two kinds of nodes are given to show that the trigonometric polynomial sequence is uniformly convergent. The convergence of the derivative of the trigonometric polynomials is shown. Trigonometric quasi-interpolants of reproducing one degree of trigonometric polynomials are constructed. Some interesting properties of the trigonometric polynomials are given.


1964 ◽  
Vol 16 ◽  
pp. 241-252 ◽  
Author(s):  
E. W. Cheney ◽  
A. Sharma

In Bernstein's proof of the Weierstrass Approximation Theorem, the polynomialsare constructed in correspondence with a function f ∊ C [0, 1] and are shown to converge uniformly to f. These Bernstein polynomials have been the starting point of many investigations, and a number of generalizations of them have appeared. It is our purpose here to consider several generalizations in the form of infinite series and to establish some of their properties.


1989 ◽  
Vol 31 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Marek Nawrocki

Let X be a completely regular Hausdorff space. A Nachbin family of weights is a set V of upper-semicontinuous positive functions on X such that if u, υ ∈ V then there exists w ∈ V and t > 0 so that u, υ ≤ tw. For any Hausdorff topological vector space E, the weighted space CV0(X, E) is the space of all E-valued continuous functions f on X such that υf vanishes at infinity for all υ ∈ V. CV0(X, E) is equipped with the weighted topologywv = wv(X, E) which has as a base of neighbourhoods of zero the family of all sets of the formwhere υ ∈ Vand W is a neighbourhood of zero in E. If E is the scalar field, then the space CV0(X, E) is denoted by CV0(X). The reader is referred to [4, 6, 8] for information on weighted spaces.


Sign in / Sign up

Export Citation Format

Share Document