Subgroups and subrings of profinite rings

1994 ◽  
Vol 116 (2) ◽  
pp. 209-222 ◽  
Author(s):  
A. G. Abercrombie

AbstractA profinite topological group is compact and therefore possesses a unique invariant probability measure (Haar measure). We shall see that it is possible to define a fractional dimension on such a group in a canonical way, making use of Haar measure and a natural choice of invariant metric. This fractional dimension is analogous to Hausdorff dimension in ℝ.It is therefore natural to ask to what extent known results concerning Hausdorff dimension in ℝ carry over to the profinite setting. In this paper, following a line of thought initiated by B. Volkmann in [12], we consider rings of a-adic integers and investigate the possible dimensions of their subgroups and subrings. We will find that for each prime p the ring of p-adic integers possesses subgroups of arbitrary dimension. This should cause little surprise since a similar result is known to hold in ℝ. However, we will also find that there exists a ring of a-adic integers possessing Borel subrings of arbitrary dimension. This is in contrast with the situation in ℝ, where the analogous statement is known to be false.

1992 ◽  
Vol 45 (3) ◽  
pp. 399-413 ◽  
Author(s):  
Paul Milnes

The consideration of compact right topological groups goes back at least to a paper of Ellis in 1958, where it is shown that a flow is distal if and only if the enveloping semigroup of the flow is such a group (now called the Ellis group of the distal flow). Later Ellis, and also Namioka, proved that a compact right topological group admits a left invariant probability measure. As well, Namioka proved that there is a strong structure theorem for compact right topological groups. More recently, John Pym and the author strengthened this structure theorem enough to be able to establish the existence of Haar measure on a compact right topological group, a probability measure that is invariant under all continuous left and right translations, and is unique as such. Examples of compact right topological groups have been considered earlier. In the present paper, we give concrete representations of several Ellis groups coming from low dimensional nilpotent Lie groups. We study these compact right topological groups, and two others, in some detail, paying attention in particular to the structure theorem and Haar measure, and to the question: is Haar measure uniquely determined by left invariance alone? (It is uniquely determined by right invariance alone.) To assist in answering this question, we develop some sufficient conditions for a positive answer. We suspect that one of the examples, a compact right topological group coming from the Euclidean group of the plane, does not satisfy these conditions; we don't know if the question has a positive answer for this group.


1958 ◽  
Vol 11 (2) ◽  
pp. 71-77 ◽  
Author(s):  
J. H. Williamson

Let G be a locally compact topological group, with left-invariant Haar measure. If L1(G) is the usual class of complex functions which are integrable with respect to this measure, and μ is any bounded Borel measure on G, then the convolution-product μ⋆f, defined for any f in Li byis again in L1, and


1982 ◽  
Vol 2 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Lai-Sang Young

AbstractWe consider diffeomorphisms of surfaces leaving invariant an ergodic Borel probability measure μ. Define HD (μ) to be the infimum of Hausdorff dimension of sets having full μ-measure. We prove a formula relating HD (μ) to the entropy and Lyapunov exponents of the map. Other classical notions of fractional dimension such as capacity and Rényi dimension are discussed. They are shown to be equal to Hausdorff dimension in the present context.


2018 ◽  
Vol 6 ◽  
Author(s):  
JOSÉ IGNACIO BURGOS GIL ◽  
DAVID HOLMES ◽  
ROBIN DE JONG

In this paper we study the singularities of the invariant metric of the Poincaré bundle over a family of abelian varieties and their duals over a base of arbitrary dimension. As an application of this study we prove the effectiveness of the height jump divisors for families of pointed abelian varieties. The effectiveness of the height jump divisor was conjectured by Hain in the more general case of variations of polarized Hodge structures of weight $-1$.


2018 ◽  
Vol 21 (4) ◽  
pp. 579-581
Author(s):  
Michal Doucha

AbstractWe provide a very short elementary proof that every separable abelian group with a bounded invariant metric isometrically embeds into a monothetic group with a bounded invariant metric, in such a way that the result of Morris and Pestov that every separable abelian topological group embeds into a monothetic group is an immediate corollary. We show that the boundedness assumption cannot be dropped.


Author(s):  
YVES BENOIST ◽  
NICOLAS DE SAXCÉ

AbstractLetGbe a connected perfect real Lie group. We show that there exists α < dimGandp∈$\mathbb{N}$* such that if μ is a compactly supported α-Frostman Borel measure onG, then thepth convolution power μ*pis absolutely continuous with respect to the Haar measure onG, with arbitrarily smooth density. As an application, we obtain that ifA⊂Gis a Borel set with Hausdorff dimension at least α, then thep-fold product setApcontains a non-empty open set.


2007 ◽  
Vol 50 (4) ◽  
pp. 632-636 ◽  
Author(s):  
Yevhen Zelenyuk ◽  
Yuliya Zelenyuk

AbstractLet G be a compact topological group and let f : G → G be a continuous transformation of G. Define f* : G → G by f*(x) = f (x–1)x and let μ = μG be Haar measure on G. Assume that H = Im f* is a subgroup of G and for every measurable C ⊆ H, μG(( f*)–1(C)) = μH(C). Then for every measurable C ⊆ G, there exist S ⊆ C and g ∈ G such that f (Sg–1) ⊆ Cg–1 and μ(S) ≥ (μ(C))2.


1970 ◽  
Vol 67 (3) ◽  
pp. 569-581
Author(s):  
M. McCrudden

1. Introduction. If G is a locally compact Hausdorff topological group, and μ is (left) Haar measure on G, then we denote by ℬ(G) the class of all Borel subsets of G having finite measure, and by VG the set {μ(E): E ∊ ℬ(G)} of real numbers. The product set function of G, ΦG: VG × VG → VG, is defined (see (4) and (5)) byand, for each u, v ∈ VG, we call a pair (E, F) of Borel subsets of G a critical (u, v)-pair, if μ(E) = u, μ(F) = v, and μ*(EF) = ΦG(u, v). We denote the class of all critical (u, v)-pairs by and we write ℰG for .


1975 ◽  
Vol 78 (3) ◽  
pp. 471-481 ◽  
Author(s):  
Beryl J. Peers

Let G be a locally compact topological group with left Haar measure, m; let M(G) denote the bounded regular Borel measures on G and let Lp(G) denote the equivalence classes of pth power integrable functions on G with respect to the left Haar measure.


Author(s):  
Ewain Gwynne ◽  
Jason Miller ◽  
Wei Qian

Abstract The conformal loop ensemble (${\textrm{CLE}}$) is the canonical conformally invariant probability measure on non-crossing loops in a simply connected domain in $\mathbbm{C}$ and is indexed by a parameter $\kappa \in (8/3,8)$. We consider ${\textrm{CLE}}_\kappa $ on the whole-plane in the regime in which the loops are self-intersecting ($\kappa \in (4,8)$) and show that it is invariant under the inversion map $z \mapsto 1/z$. This shows that whole-plane ${\textrm{CLE}}_\kappa $ for $\kappa \in (4,8)$ defines a conformally invariant measure on loops on the Riemann sphere. The analogous statement in the regime in which the loops are simple ($\kappa \in (8/3,4]$) was proven by Kemppainen and Werner and together with the present work covers the entire range $\kappa \in (8/3,8)$ for which ${\textrm{CLE}}_\kappa $ is defined. As an intermediate step in the proof, we show that ${\textrm{CLE}}_\kappa $ for $\kappa \in (4,8)$ on an annulus, with any specified number of inner-boundary-surrounding loops, is well defined and conformally invariant.


Sign in / Sign up

Export Citation Format

Share Document