scholarly journals Haar measure and compact right topological groups

1992 ◽  
Vol 45 (3) ◽  
pp. 399-413 ◽  
Author(s):  
Paul Milnes

The consideration of compact right topological groups goes back at least to a paper of Ellis in 1958, where it is shown that a flow is distal if and only if the enveloping semigroup of the flow is such a group (now called the Ellis group of the distal flow). Later Ellis, and also Namioka, proved that a compact right topological group admits a left invariant probability measure. As well, Namioka proved that there is a strong structure theorem for compact right topological groups. More recently, John Pym and the author strengthened this structure theorem enough to be able to establish the existence of Haar measure on a compact right topological group, a probability measure that is invariant under all continuous left and right translations, and is unique as such. Examples of compact right topological groups have been considered earlier. In the present paper, we give concrete representations of several Ellis groups coming from low dimensional nilpotent Lie groups. We study these compact right topological groups, and two others, in some detail, paying attention in particular to the structure theorem and Haar measure, and to the question: is Haar measure uniquely determined by left invariance alone? (It is uniquely determined by right invariance alone.) To assist in answering this question, we develop some sufficient conditions for a positive answer. We suspect that one of the examples, a compact right topological group coming from the Euclidean group of the plane, does not satisfy these conditions; we don't know if the question has a positive answer for this group.

1993 ◽  
Vol 114 (3) ◽  
pp. 439-442 ◽  
Author(s):  
Sidney A. Morris ◽  
Vladimir G. Pestov

We prove that any open subgroup of the free abelian topological group on a completely regular space is a free abelian topological group. Moreover, the free topological bases of both groups have the same covering dimension. The prehistory of this result is as follows. The celebrated Nielsen–Schreier theorem states that every subgroup of a free group is free, and it is equally well known that every subgroup of a free abelian group is free abelian. The analogous result is not true for free (abelian) topological groups [1,5]. However, there exist certain sufficient conditions for a subgroup of a free topological group to be topologically free [2]; in particular, an open subgroup of a free topological group on a kω-space is topologically free. The corresponding question for free abelian topological groups asked 8 years ago by Morris [11] proved to be more difficult and remained open even within the realm of kω-spaces. In the present paper a comprehensive answer to this question is obtained.


1969 ◽  
Vol 1 (2) ◽  
pp. 145-160 ◽  
Author(s):  
Sidney A. Morris

We introduce the concept of a variety of topological groups and of a free topological group F(X, ) of on a topological space X as generalizations of the analogous concepts in the theory of varieties of groups. Necessary and sufficient conditions for F(X, ) to exist are given and uniqueness is proved. We say the topological group FM,(X) is moderately free on X if its topology is maximal and it is algebraically free with X as a free basis. We show that FM(X) is a free topological group of the variety it generates and that if FM(X) is in then it is topologically isomorphic to a quotient group of F(X, ). It is also shown how well known results on free (free abelian) topological groups can be deduced. In the algebraic theory there are various equivalents of a free group of a variety. We examine the relationships between the topological analogues of these. In the appendix a result similar to the Stone-Čech compactification is proved.


1996 ◽  
Vol 19 (2) ◽  
pp. 311-316
Author(s):  
Jennifer P. Montgomery

The concept of a uniformity was developed by A. Well and there have been several generalizations. This paper defines a point semiuniformity and gives necessary and sufficient conditions for a topological space to be point semiuniformizable. In addition, just as uniformities are associated with topological groups, a point semiuniformity is naturally associated with a semicontinuous group. This paper shows that a point semiuniformity associated with a semicontinuous group is a uniformity if and only if the group is a topological group.


1998 ◽  
Vol 41 (4) ◽  
pp. 463-472 ◽  
Author(s):  
Alan Moran

AbstractWe show that for certain compact right topological groups, , the strong operator topology closure of the image of the right regular representation of G in L(H), where H = L2(G), is a compact topological group and introduce a class of representations, R , which effectively transfers the representation theory of over to G. Amongst the groups for which this holds is the class of equicontinuous groups which have been studied by Ruppert in [10].We use familiar examples to illustrate these features of the theory and to provide a counter-example. Finally we remark that every equicontinuous group which is at the same time a Borel group is in fact a topological group.


2007 ◽  
Vol 27 (6) ◽  
pp. 1819-1837 ◽  
Author(s):  
ELI GLASNER

AbstractA dynamical version of the Bourgain–Fremlin–Talagrand dichotomy shows that the enveloping semigroup of a dynamical system is either very large and contains a topological copy of $\beta \mathbb {N}$, or it is a ‘tame’ topological space whose topology is determined by the convergence of sequences. In the latter case, the dynamical system is said to be tame. We use the structure theory of minimal dynamical systems to show that, when the acting group is Abelian, a tame metric minimal dynamical system (i) is almost automorphic (i.e. it is an almost one-to-one extension of an equicontinuous system), and (ii) admits a unique invariant probability measure such that the corresponding measure-preserving system is measure-theoretically isomorphic to the Haar measure system on the maximal equicontinuous factor.


1994 ◽  
Vol 116 (2) ◽  
pp. 209-222 ◽  
Author(s):  
A. G. Abercrombie

AbstractA profinite topological group is compact and therefore possesses a unique invariant probability measure (Haar measure). We shall see that it is possible to define a fractional dimension on such a group in a canonical way, making use of Haar measure and a natural choice of invariant metric. This fractional dimension is analogous to Hausdorff dimension in ℝ.It is therefore natural to ask to what extent known results concerning Hausdorff dimension in ℝ carry over to the profinite setting. In this paper, following a line of thought initiated by B. Volkmann in [12], we consider rings of a-adic integers and investigate the possible dimensions of their subgroups and subrings. We will find that for each prime p the ring of p-adic integers possesses subgroups of arbitrary dimension. This should cause little surprise since a similar result is known to hold in ℝ. However, we will also find that there exists a ring of a-adic integers possessing Borel subrings of arbitrary dimension. This is in contrast with the situation in ℝ, where the analogous statement is known to be false.


1995 ◽  
Vol 15 (6) ◽  
pp. 1075-1089 ◽  
Author(s):  
Shmuel Friedland

AbstractWe give sufficient conditions for a group of homeomorphisms of a compact Hausdorff space to have an invariant probability measure. For a complex projective space CPn we give a necessary condition for a subgroup of Aut(CPn) to have an invariant probability measure. We discuss two approaches to Auslander's conjecture.


1999 ◽  
Vol 59 (3) ◽  
pp. 421-426
Author(s):  
C. Robinson Edward Raja

Let G be a Hausdorff topological group and μ and λ be probability measures on G. We prove necessary and sufficient conditions for the existence of a probability measure ρ such that λ * ρ * μ = ρ under certain conditions. We prove a similar result for probability measures on semigroups.


2008 ◽  
Vol 78 (1) ◽  
pp. 171-176 ◽  
Author(s):  
JANUSZ BRZDȨK

AbstractWe give some general results concerning continuity of measurable homomorphisms of topological groups. As a consequence we show that a Christensen measurable homomorphism of a Polish abelian group into a locally compact topological group is continuous. We also obtain similar results for the universally measurable homomorphisms and the homomorphisms that have the Baire property.


2003 ◽  
Vol 10 (2) ◽  
pp. 209-222
Author(s):  
I. Bakhia

Abstract Functions of dimension modulo a (rather wide) class of spaces are considered and the conditions are found, under which the dimension of the product of spaces modulo these classes is equal to zero. Based on these results, the sufficient conditions are established, under which spaces of free topological semigroups (in the sense of Marxen) and spaces of free topological groups (in the sense of Markov and Graev) are zero-dimensional modulo classes of compact spaces.


Sign in / Sign up

Export Citation Format

Share Document