Analytic spread and non-vanishing of asymptotic depth

2017 ◽  
Vol 163 (2) ◽  
pp. 289-299 ◽  
Author(s):  
CLETO B. MIRANDA–NETO

AbstractLetSbe a polynomial ring over a fieldKof characteristic zero and letM⊂Sbe an ideal given as an intersection of powers of incomparable monomial prime ideals (e.g., the case whereMis a squarefree monomial ideal). In this paper we provide a very effective, sufficient condition for a monomial prime idealP⊂ScontainingMbe such that the localisationMPhasnon-maximal analytic spread. Our technique describes, in fact, a concrete obstruction forPto be an asymptotic prime divisor ofMwith respect to the integral closure filtration, allowing us to employ a theorem of McAdam as a bridge to analytic spread. As an application, we derive – with the aid of results of Brodmann and Eisenbud-Huneke – a situation where the asymptotic and conormal asymptotic depths cannot vanish locally at such primes.

2000 ◽  
Vol 43 (3) ◽  
pp. 312-319 ◽  
Author(s):  
David E. Dobbs

AbstractIf n and m are positive integers, necessary and sufficient conditions are given for the existence of a finite commutative ring R with exactly n elements and exactly m prime ideals. Next, assuming the Axiom of Choice, it is proved that if R is a commutative ring and T is a commutative R-algebra which is generated by a set I, then each chain of prime ideals of T lying over the same prime ideal of R has at most 2|I| elements. A polynomial ring example shows that the preceding result is best-possible.


2011 ◽  
Vol 27 (2) ◽  
pp. 217-224
Author(s):  
MUHAMMAD ISHAQ ◽  

We give different bounds for the Stanley depth of a monomial ideal I of a polynomial algebra S over a field K. For example we show that the Stanley depth of I is less than or equal to the Stanley depth of any prime ideal associated to S/I. Also we show that the Stanley conjecture holds for I and S/I when the associated prime ideals of S/I are generated by disjoint sets of variables.


2019 ◽  
Vol 19 (10) ◽  
pp. 2050201
Author(s):  
Ibrahim Al-Ayyoub

Let [Formula: see text] be a monomial ideal in a polynomial ring with two indeterminates over a field. Assume [Formula: see text] is contained in the integral closure of some ideal that is generated by two elements from the generating set of [Formula: see text]. We produce sharp upper bounds for each of the reduction number and the Ratliff–Rush reduction number of the ideal [Formula: see text]. Under certain hypotheses, we give the exact values of these reduction numbers, and we provide an explicit method for obtaining these sharp upper bounds.


1978 ◽  
Vol 30 (01) ◽  
pp. 95-101 ◽  
Author(s):  
L. J. Ratliff

All rings in this paper are assumed to be commutative with identity, and the undefined terminology is the same as that in [3]. In 1956, in an important paper [2], M. Nagata constructed an example which showed (among other things): (i) a maximal chain of prime ideals in an integral extension domain R' of a local domain (R, M) need not contract in R to a maximal chain of prime ideals; and, (ii) a prime ideal P in R' may be such that height P < height P ∩ R. In his example, Rf was the integral closure of R and had two maximal ideals. In this paper, by using Nagata's example, we show that there exists a finite local integral extension domain of D = R[X](M,X) for which (i) and (ii) hold (see (2.8.1) and (2.10)).


2019 ◽  
Vol 15 (01) ◽  
pp. 131-136 ◽  
Author(s):  
Haoli Wang ◽  
Jun Hao ◽  
Lizhen Zhang

Let [Formula: see text] be a commutative semigroup endowed with a binary associative operation [Formula: see text]. An element [Formula: see text] of [Formula: see text] is said to be idempotent if [Formula: see text]. The Erdős–Burgess constant of [Formula: see text] is defined as the smallest [Formula: see text] such that any sequence [Formula: see text] of terms from [Formula: see text] and of length [Formula: see text] contains a nonempty subsequence, the sum of whose terms is idempotent. Let [Formula: see text] be a prime power, and let [Formula: see text] be the polynomial ring over the finite field [Formula: see text]. Let [Formula: see text] be a quotient ring of [Formula: see text] modulo any ideal [Formula: see text]. We gave a sharp lower bound of the Erdős–Burgess constant of the multiplicative semigroup of the ring [Formula: see text], in particular, we determined the Erdős–Burgess constant in the case when [Formula: see text] is the power of a prime ideal or a product of pairwise distinct prime ideals in [Formula: see text].


1993 ◽  
Vol 36 (2) ◽  
pp. 299-317 ◽  
Author(s):  
K. W. Mackenzie

Let R be a commutative ring and {σ1,…,σn} a set of commuting automorphisms of R. Let T = be the skew Laurent polynomial ring in n indeterminates over R and let be the Laurent polynomial ring in n central indeterminates over R. There is an isomorphism φ of right R-modules between T and S given by φ(θj) = xj. We will show that the map φ induces a bijection between the prime ideals of T and the Γ-prime ideals of S, where Γ is a certain set of endomorphisms of the ℤ-module S. We can study the structure of the lattice of Γ-prime ideals of the ring S by using commutative algebra, and this allows us to deduce results about the prime ideal structure of the ring T. As an example, if R is a Cohen-Macaulay ℂ-algebra and the action of the σj on R is locally finite-dimensional, we will show that the ring T is catenary.


Author(s):  
U. Maddna Swamy ◽  
G. C. Rao ◽  
P. Manikyamba

AbstractEpstein and Horn, in their paper ‘Chain based lattices’, characterized P1-lattices, and P2-lattices in terms of their prime ideals. But no such prime ideal characterization for P0-lattices was given. Our main aim in this paper is to characterize P0-lattices in terms of their prime ideals. We also give a necessary and sufficient condition for a P-algebra to be a P0-lattice (and hence a P2-lattice).


2019 ◽  
pp. 1-13 ◽  
Author(s):  
CĂTĂLIN CIUPERCĂ

We prove that the integral closure of a strongly Golod ideal in a polynomial ring over a field of characteristic zero is strongly Golod, positively answering a question of Huneke. More generally, the rational power $I_{\unicode[STIX]{x1D6FC}}$ of an arbitrary homogeneous ideal is strongly Golod for $\unicode[STIX]{x1D6FC}\geqslant 2$ and, if $I$ is strongly Golod, then $I_{\unicode[STIX]{x1D6FC}}$ is strongly Golod for $\unicode[STIX]{x1D6FC}\geqslant 1$ . We also show that all the coefficient ideals of a strongly Golod ideal are strongly Golod.


1986 ◽  
Vol 28 (1) ◽  
pp. 11-13 ◽  
Author(s):  
Lieven Le Bruyn

A. W. Chatters and D. A. Jordan defined in [0] a unique factorization ring to be a prime ring in which every height one prime ideal is principal. In this note we will prove that the trace ring of m generic n × n-matrices satisfies this condition.Throughout this note, k will be a field of characteristic zero. Consider the polynomial ring S = k[;1≤i, j≤n, 1≤l≤m] and the n × n matrices Xl = in Mn(S). The k-subalgebra of Mn(S) generated by {Xl; 1≤l≤m} is called the ring of m generic n × n matrices Gm,n. Adjoining to it the traces of all its elements we obtain the trace ring of m n × n generic matrices, cfr. e.g. [1].


2013 ◽  
Vol 87 (3) ◽  
pp. 514-526 ◽  
Author(s):  
KEIVAN BORNA ◽  
RAHELEH JAFARI

AbstractLet $S$ be a polynomial ring over a field $K$ and let $I$ be a monomial ideal of $S$. We say that $I$ is MHC (that is, $I$ satisfies the maximal height condition for the associated primes of $I$) if there exists a prime ideal $\mathfrak{p}\in {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I$ for which $\mathrm{ht} (\mathfrak{p})$ equals the number of indeterminates that appear in the minimal set of monomials generating $I$. Let $I= { \mathop{\bigcap }\nolimits}_{i= 1}^{k} {Q}_{i} $ be the irreducible decomposition of $I$ and let $m(I)= \max \{ \vert Q_{i}\vert - \mathrm{ht} ({Q}_{i} ): 1\leq i\leq k\} $, where $\vert {Q}_{i} \vert $ denotes the total degree of ${Q}_{i} $. Then it can be seen that when $I$ is primary, $\mathrm{reg} (S/ I)= m(I)$. In this paper we improve this result and show that whenever $I$ is MHC, then $\mathrm{reg} (S/ I)= m(I)$ provided $\vert {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I\vert \leq 2$. We also prove that $m({I}^{n} )\leq n\max \{ \vert Q_{i}\vert : 1\leq i\leq ~k\} - \mathrm{ht} (I)$, for all $n\geq 1$. In addition we show that if $I$ is MHC and $w$ is an indeterminate which is not in the monomials generating $I$, then $\mathrm{reg} (S/ \mathop{(I+ {w}^{d} S)}\nolimits ^{n} )\leq \mathrm{reg} (S/ I)+ nd- 1$ for all $n\geq 1$ and $d$ large enough. Finally, we implement an algorithm for the computation of $m(I)$.


Sign in / Sign up

Export Citation Format

Share Document